![](bg6.png)
Ground Truth 1 Snapshot 3 Snapshots 5 Snapshots 7 Snapshots
5D DCT
PSNR 18.1089 18.3892 19.4972 21.2688
5D AMDE
PSNR 24.8808 25.0373 26.4341 28.7968
Figure 3: 5D CS Performance comparison (5D DCT, 5D AMDE) of reconstruction results using different number of snapshots
of Elephant scene. Captions are identical to Fig. 4.
ACKNOWLEDGEMENTS
This project has received funding from the European
Union’s Hori- zon 2020 research and innovation pro-
gram under Marie Skłodowska- Curie grant agree-
ment No956585. We thank the anonymous reviewers
for their feedback.
REFERENCES
Aharon, M., Elad, M., and Bruckstein, A. (2006). K-SVD:
An algorithm for designing overcomplete dictionaries
for sparse representation. IEEE Transactions on Sig-
nal Processing, 54(11):4311–4322.
Arce, G. R., Brady, D. J., Carin, L., Arguello, H., and Kittle,
D. S. (2014). Compressive Coded Aperture Spectral
Imaging: An Introduction. IEEE Signal Processing
Magazine, 31(1):105–115. Conference Name: IEEE
Signal Processing Magazine.
Babacan, S. D., Ansorge, R., Luessi, M., Molina, R., and
Katsaggelos, A. K. (2009). Compressive sensing of
light fields. In Proceedings of the 16th IEEE ICIP,
ICIP’09, page 2313–2316. IEEE Press.
Candes, E. J. and Wakin, M. B. (2008). An Introduction
To Compressive Sampling. IEEE Signal Processing
Magazine, 25(2):21–30. Conference Name: IEEE
Signal Processing Magazine.
Duarte, M. F. and Baraniuk, R. G. (2012). Kronecker Com-
pressive Sensing. IEEE Transactions on Image Pro-
cessing, 21(2):494–504. Conference Name: IEEE
Transactions on Image Processing.
Ghaffari, A., Babaie-Zadeh, M., and Jutten, C. (2009).
Sparse decomposition of two dimensional signals. In
2009 IEEE International Conference on Acoustics,
Speech and Signal Processing, pages 3157–3160.
Gortler, S. J., Grzeszczuk, R., Szeliski, R., and Cohen, M. F.
(1996). The lumigraph. In Proceedings of the 23rd an-
nual conference on Computer graphics and interac-
tive techniques, SIGGRAPH ’96, pages 43–54, New
York, NY, USA. ACM.
Hua, X., Wang, Y., Wang, S., Zou, X., Zhou, Y., Li,
L., Yan, F., Cao, X., Xiao, S., Tsai, D. P., Han, J.,
Wang, Z., and Zhu, S. (2022). Ultra-compact snapshot
spectral light-field imaging. Nature Communications,
13(1):2732. Number: 1 Publisher: Nature Publishing
Group.
Huang, L., Luo, R., Liu, X., and Hao, X. (2022). Spectral
imaging with deep learning. Light: Science & Appli-
cations, 11(1):61.
Kolda, T. G. and Bader, B. W. (2009). Tensor decomposi-
tions and applications. SIAM Review, 51(3):455–500.
Levoy, M. and Hanrahan, P. (1996). Light field render-
ing. In Proceedings of the 23rd annual conference on
Computer graphics and interactive techniques - SIG-
GRAPH ’96, pages 31–42, Not Known. ACM Press.
Liang, C.-K., Lin, T.-H., Wong, B.-Y., Liu, C., and Chen,
H. H. (2008). Programmable aperture photogra-
phy: Multiplexed light field acquisition. ACM Trans.
Graph., 27(3):1–10.
Marquez, M., Rueda-Chacon, H., and Arguello, H. (2020).
Compressive Spectral Light Field Image Reconstruc-
tion via Online Tensor Representation. IEEE Trans-
actions on Image Processing, 29:3558–3568.
Marwah, K., Wetzstein, G., Bando, Y., and Raskar, R.
(2013). Compressive light field photography using
overcomplete dictionaries and optimized projections.
ACM Transactions on Graphics, 32(4):1–12.
Miandji, E., Hajisharif, S., and Unger, J. (2019). A Unified
Framework for Compression and Compressed Sens-
ing of Light Fields and Light Field Videos. ACM
Transactions on Graphics, 38(3):1–18.
Mohimani, H., Babaie-Zadeh, M., Gorodnitsky, I., and Jut-
ten, C. (2010). Sparse Recovery using Smoothed
VISAPP 2024 - 19th International Conference on Computer Vision Theory and Applications
354