
ing to a decrease in TM-score. Allowing separate pro-
tein structure predictions for each domain might help
avoid the effects of these disordered regions. In sum-
mary, the analyses conducted in this study revealed
limitations in the current structure prediction tools re-
garding their ability to predict structural changes in
mutated sequences. To enhance the accuracy of pre-
dicting structural alterations associated with nsSNVs,
we propose further refinement of prediction models.
This refinement should involve the collection of addi-
tional experimentally determined structure data to ad-
dress the challenges inherent in predicting the struc-
tural impact of nsSNVs.
REFERENCES
Adzhubei, I. A., Schmidt, S., Peshkin, L., Ramensky, V. E.,
Gerasimova, A., Bork, P., Kondrashov, A. S., and Sun-
yaev, S. R. (2010). A method and server for pre-
dicting damaging missense mutations. Nat Methods,
7(4):248–9.
Apweiler, R., Bairoch, A., Wu, C. H., Barker, W. C.,
Boeckmann, B., Ferro, S., Gasteiger, E., Huang, H.,
Lopez, R., Magrane, M., Martin, M. J., Natale, D. A.,
O’Donovan, C., Redaschi, N., and Yeh, L.-S. L.
(2004). Uniprot: the universal protein knowledgebase.
Nucleic acids research, 32(Database issue):D115–
D119.
Baek, M., DiMaio, F., Anishchenko, I., Dauparas, J.,
Ovchinnikov, S., Lee, G. R., Wang, J., Cong, Q.,
Kinch, L. N., Schaeffer, R. D., Mill
´
an, C., Park, H.,
Adams, C., Glassman, C. R., DeGiovanni, A., Pereira,
J. H., Rodrigues, A. V., Dijk, A. A. v., Ebrecht,
A. C., Opperman, D. J., Sagmeister, T., Buhlheller,
C., Pavkov-Keller, T., Rathinaswamy, M. K., Dalwadi,
U., Yip, C. K., Burke, J. E., Garcia, K. C., Grishin,
N. V., Adams, P. D., Read, R. J., and Baker, D. (2021).
Accurate prediction of protein structures and inter-
actions using a three-track neural network. Science,
373(6557):871–876.
Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat,
T. N., Weissig, H., Shindyalov, I. N., and Bourne, P. E.
(2000). The protein data bank. Nucleic Acids Res,
28(1):235–42.
Carugo, O. and Pongor, S. (2001). A normalized root-
mean-square distance for comparing protein three-
dimensional structures. Protein Sci, 10(7):1470–3.
Davydov, E. V., Goode, D. L., Sirota, M., Cooper, G. M.,
Sidow, A., and Batzoglou, S. (2010). Identifying a
high fraction of the human genome to be under se-
lective constraint using gerp++. PLOS Computational
Biology, 6(12):e1001025.
Gerasimavicius, L., Livesey, B. J., and Marsh, J. A.
(2022). Loss-of-function, gain-of-function and
dominant-negative mutations have profoundly differ-
ent effects on protein structure. Nature Communica-
tions, 13(1):3895.
Hassan, M. S., Shaalan, A. A., Dessouky, M. I., Abdel-
naiem, A. E., and ElHefnawi, M. (2019). Evalua-
tion of computational techniques for predicting non-
synonymous single nucleotide variants pathogenicity.
Genomics, 111(4):869–882.
Iqbal, S., P
´
erez-Palma, E., Jespersen, J. B., May, P., Hok-
sza, D., Heyne, H. O., Ahmed, S. S., Rifat, Z. T.,
Rahman, M. S., Lage, K., Palotie, A., Cottrell, J. R.,
Wagner, F. F., Daly, M. J., Campbell, A. J., and Lal,
D. (2020). Comprehensive characterization of amino
acid positions in protein structures reveals molecular
effect of missense variants. Proc Natl Acad Sci U S A,
117(45):28201–28211.
Ittisoponpisan, S., Islam, S. A., Khanna, T., Alhuzimi, E.,
David, A., and Sternberg, M. J. E. (2019). Can pre-
dicted protein 3d structures provide reliable insights
into whether missense variants are disease associated?
J Mol Biol, 431(11):2197–2212.
Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov,
M., Ronneberger, O., Tunyasuvunakool, K., Bates, R.,
ˇ
Z
´
ıdek, A., Potapenko, A., Bridgland, A., Meyer, C.,
Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-
Paredes, B., Nikolov, S., Jain, R., Adler, J., Back, T.,
Petersen, S., Reiman, D., Clancy, E., Zielinski, M.,
Steinegger, M., Pacholska, M., Berghammer, T., Bo-
denstein, S., Silver, D., Vinyals, O., Senior, A. W.,
Kavukcuoglu, K., Kohli, P., and Hassabis, D. (2021).
Highly accurate protein structure prediction with al-
phafold. Nature, 596(7873):583–589.
Keskin Karakoyun, H., Y
¨
uksel S¸, K., Amanoglu, I.,
Naserikhojasteh, L., Yes¸ilyurt, A., Yakıcıer, C.,
Timuc¸in, E., and Akyerli, C. B. (2023). Evaluation
of alphafold structure-based protein stability predic-
tion on missense variations in cancer. Front Genet,
14:1052383.
Kryshtafovych, A., Schwede, T., Topf, M., Fidelis, K.,
and Moult, J. (2021). Critical assessment of meth-
ods of protein structure prediction (casp)—round xiv.
Proteins: Structure, Function, and Bioinformatics,
89(12):1607–1617.
Kuhlman, B. and Bradley, P. (2019). Advances in pro-
tein structure prediction and design. Nature Reviews
Molecular Cell Biology, 20(11):681–697.
Landrum, M. J., Lee, J. M., Benson, M., Brown, G. R.,
Chao, C., Chitipiralla, S., Gu, B., Hart, J., Hoffman,
D., Jang, W., Karapetyan, K., Katz, K., Liu, C., Mad-
dipatla, Z., Malheiro, A., McDaniel, K., Ovetsky, M.,
Riley, G., Zhou, G., Holmes, J., Kattman, B. L., and
Maglott, D. R. (2017). Clinvar: improving access to
variant interpretations and supporting evidence. Nu-
cleic Acids Research, 46(D1):D1062–D1067.
Lin, Z., Akin, H., Rao, R., Hie, B., Zhu, Z., Lu, W.,
Smetanin, N., Verkuil, R., Kabeli, O., Shmueli, Y.,
dos Santos Costa, A., Fazel-Zarandi, M., Sercu, T.,
Candido, S., and Rives, A. (2023). Evolutionary-scale
prediction of atomic-level protein structure with a lan-
guage model. Science, 379(6637):1123–1130.
Ng, P. C. and Henikoff, S. (2003). Sift: Predicting amino
acid changes that affect protein function. Nucleic
Acids Res, 31(13):3812–4.
BIOINFORMATICS 2024 - 15th International Conference on Bioinformatics Models, Methods and Algorithms
502