
Garncarek, Ł., Powalski, R., Stanisławek, T., Topolski, B.,
Halama, P., Turski, M., and Grali
´
nski, F. (2021). Lam-
bert: layout-aware language modeling for information
extraction. In International Conference on Document
Analysis and Recognition, pages 532–547.
Ghodsi, Z., Gu, T., and Garg, S. (2017). Safetynets: Ver-
ifiable execution of deep neural networks on an un-
trusted cloud. Advances in Neural Information Pro-
cessing Systems, 30.
Gilad-Bachrach, R., Dowlin, N., Laine, K., Lauter, K.,
Naehrig, M., and Wernsing, J. (2016). Cryptonets:
Applying neural networks to encrypted data with high
throughput and accuracy. In International conference
on machine learning, pages 201–210. PMLR.
Heinzerling, B. and Strube, M. (2018). Bpemb:
Tokenization-free pre-trained subword embeddings in
275 languages. In Proceedings of the Eleventh In-
ternational Conference on Language Resources and
Evaluation (LREC).
Hesamifard, E., Takabi, H., and Ghasemi, M. (2017). Cryp-
todl: Deep neural networks over encrypted data. arXiv
preprint arXiv:1711.05189.
Huang, Z., Chen, K., He, J., Bai, X., Karatzas, D., Lu,
S., and Jawahar, C. (2019). Icdar2019 competition
on scanned receipt ocr and information extraction. In
2019 International Conference on Document Analysis
and Recognition (ICDAR), pages 1516–1520. IEEE.
Ibarrondo, A. and
¨
Onen, M. (2018). Fhe-compatible batch
normalization for privacy preserving deep learning.
In Data Privacy Management, Cryptocurrencies and
Blockchain Technology: ESORICS 2018 International
Workshops, DPM 2018 and CBT 2018, Barcelona,
Spain, September 6-7, 2018, Proceedings 13, pages
389–404.
Ioffe, S. and Szegedy, C. (2015). Batch normalization: Ac-
celerating deep network training by reducing internal
covariate shift. In International conference on ma-
chine learning, pages 448–456. pmlr.
Ishiyama, T., Suzuki, T., and Yamana, H. (2020). Highly
accurate cnn inference using approximate activation
functions over homomorphic encryption. In 2020
IEEE International Conference on Big Data (Big
Data), pages 3989–3995. IEEE.
Jang, J., Lee, Y., Kim, A., Na, B., Yhee, D., Lee, B., Cheon,
J. H., and Yoon, S. (2022). Privacy-preserving deep
sequential model with matrix homomorphic encryp-
tion. In Proceedings of the 2022 ACM on Asia Con-
ference on Computer and Communications Security,
pages 377–391.
Kim, A., Song, Y., Kim, M., Lee, K., and Cheon, J. H.
(2018). Logistic regression model training based on
the approximate homomorphic encryption. BMC med-
ical genomics, 11(4):23–31.
Lee, J.-W., Kang, H., Lee, Y., Choi, W., Eom, J., Deryabin,
M., Lee, E., Lee, J., Yoo, D., Kim, Y.-S., et al. (2022).
Privacy-preserving machine learning with fully homo-
morphic encryption for deep neural network. IEEE
Access, 10:30039–30054.
Li, D., Shao, R., Wang, H., Guo, H., Xing, E. P., and Zhang,
H. (2022). Mpcformer: fast, performant and pri-
vate transformer inference with mpc. arXiv preprint
arXiv:2211.01452.
Liao, Z., Luo, J., Gao, W., Zhang, Y., and Zhang, W. (2019).
Homomorphic cnn for privacy preserving learning on
encrypted sensor data. In 2019 Chinese Automation
Congress (CAC), pages 5593–5598. IEEE.
Liu, J., Juuti, M., Lu, Y., and Asokan, N. (2017). Oblivi-
ous neural network predictions via minionn transfor-
mations. In Proceedings of the 2017 ACM SIGSAC
conference on computer and communications secu-
rity, pages 619–631.
Lloret-Talavera, G., Jorda, M., Servat, H., Boemer, F.,
Chauhan, C., Tomishima, S., Shah, N. N., and Pena,
A. J. (2021). Enabling homomorphically encrypted
inference for large dnn models. IEEE Transactions on
Computers, 71(5):1145–1155.
Lou, Q. and Jiang, L. (2021). Hemet: A homomorphic-
encryption-friendly privacy-preserving mobile neural
network architecture. In International conference on
machine learning, pages 7102–7110. PMLR.
Meinardus, G. (2012). Approximation of functions: Theory
and numerical methods, volume 13. Springer Science
& Business Media.
Mohassel, P. and Zhang, Y. (2017). Secureml: A system
for scalable privacy-preserving machine learning. In
2017 IEEE symposium on security and privacy (SP),
pages 19–38. IEEE.
Panda, S. (2022). Polynomial approximation of inverse
sqrt function for fhe. In International Symposium on
Cyber Security, Cryptology, and Machine Learning,
pages 366–376.
Qian, J., Zhang, P., Zhu, H., Liu, M., Wang, J., and Ma,
X. (2023). Lhdnn: Maintaining high precision and
low latency inference of deep neural networks on en-
crypted data. Applied Sciences, 13(8):4815.
Wang, C.-C., Tu, C.-H., Kao, M.-C., and Hung, S.-H.
(2022). Tensorhe: a homomorphic encryption trans-
former for privacy-preserving deep learning. In Pro-
ceedings of the Conference on Research in Adaptive
and Convergent Systems, pages 124–130.
Xu, Y., Li, M., Cui, L., Huang, S., Wei, F., and Zhou, M.
(2020a). Layoutlm: Pre-training of text and layout
for document image understanding. In Proceedings of
the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 1192–
1200.
Xu, Y., Xu, Y., Lv, T., Cui, L., Wei, F., Wang, G.,
Lu, Y., Florencio, D., Zhang, C., Che, W., et al.
(2020b). Layoutlmv2: Multi-modal pre-training for
visually-rich document understanding. arXiv preprint
arXiv:2012.14740.
Zheng, P., Cai, Z., Zeng, H., and Huang, J. (2022). Keyword
spotting in the homomorphic encrypted domain using
deep complex-valued cnn. In Proceedings of the 30th
ACM International Conference on Multimedia, pages
1474–1483.
Homomorphic Encryption Friendly Multi-GAT for Information Extraction in Business Documents
825