
Chagas, J. V. d. S. (2022). Quantification of underwater
bubble leaks applied to the oil industry (in portuguese:
Quantificac¸
˜
ao de vazamentos de bolhas subaqu
´
aticas
aplicada
`
a ind
´
ustria de petr
´
oleo). M.Sc. Dissertation,
available in: http://www.ic.uff.br/index.php/pt/pos-
graduacao/teses-e-dissertacoes (2022).
Ding, Z. R. (2003). Hydromechanics. Higher Education
Press (Beijing).
Fernandes, A., Passos, F. G. O., and Conci, A. (2022a).
Comparing image preprocessing techniques for detec-
tion of bubbles in leaks. In 2022 29th International
Conference on Systems, Signals and Image Process-
ing (IWSSIP), volume CFP2255E-ART, pages 1–4.
Fernandes, A., Passos, F. G. O., and Conci, A. (2022b).
Comparing image preprocessing techniques for detec-
tion of bubbles in leaks. In 2022 29th International
Conference on Systems, Signals and Image Process-
ing (IWSSIP), volume CFP2255E-ART, pages 1–4.
Hart, R. C., Goncalves, L. M. G., Conci, A., and Ara-
gao, D. P. (2023). Comparing image processing tech-
niques for bubble separation and counting in under-
water leaks. In 2023 30th International Conference
on Systems, Signals and Image Processing (IWSSIP),
pages 1–5.
Hessenkemper, H., Starke, S., Atassi, Y., Ziegenhein, T.,
and Lucas, D. (2022). Bubble identification from im-
ages with machine learning methods. International
Journal of Multiphase Flow, 155:104169.
Honkanen, M., Saarenrinne, P., Stoor, T., and Niinim
¨
aki, J.
(2005). Recognition of highly overlapping ellipse-like
bubble images. Measurement Science and Technol-
ogy, 16(9):1760.
Jordt, A., Zelenka, C., Von Deimling, J. S., Koch, R.,
and K
¨
oser, K. (2015). The bubble box: Towards
an automated visual sensor for 3d analysis and char-
acterization of marine gas release sites. Sensors,
15(12):30716–30735.
Kato, N., Choyekh, M., Dewantara, R., Senga, H., Chiba,
H., Kobayashi, E., Yoshie, M., Tanaka, T., and Short,
T. (2017). An autonomous underwater robot for track-
ing and monitoring of subsea plumes after oil spills
and gas leaks from seafloor. Journal of Loss Preven-
tion in the Process Industries, 50:386–396.
Li, J., Shao, S., and Hong, J. (2020). Machine learn-
ing shadowgraph for particle size and shape char-
acterization. Measurement Science and Technology,
32(1):015406.
Nikolovska, A., Sahling, H., and Bohrmann, G. (2008).
Hydroacoustic methodology for detection, localiza-
tion, and quantification of gas bubbles rising from the
seafloor at gas seeps from the eastern black sea. Geo-
chemistry, Geophysics, Geosystems, 9(10).
R
¨
omer, M., Sahling, H., Pape, T., Bohrmann, G., and Spieß,
V. (2012). Quantification of gas bubble emissions
from submarine hydrocarbon seeps at the makran con-
tinental margin (offshore pakistan). Journal of Geo-
physical Research: Oceans, 117(C10).
Ronneberger, O., Fischer, P., and Brox, T. (2015). U-net:
Convolutional networks for biomedical image seg-
mentation.
Sahling, H., Bohrmann, G., Artemov, Y. G., Bahr, A.,
Br
¨
uning, M., Klapp, S. A., Klaucke, I., Kozlova, E.,
Nikolovska, A., Pape, T., et al. (2009). Vodyanit-
skii mud volcano, sorokin trough, black sea: Geolog-
ical characterization and quantification of gas bubble
streams. Marine and Petroleum Geology, 26(9):1799–
1811.
Takimoto, R. Y., Matuda, M. Y., Oliveira, T. F., Adamowski,
J. C., Sato, A. K., Martins, T. C., and Tsuzuki, M. S.
(2020). Comparison of optical and ultrasonic meth-
ods for quantification of underwater gas leaks. IFAC-
PapersOnLine, 53(2):16721–16726.
Vielst
¨
adte, L., Karstens, J., Haeckel, M., Schmidt, M.,
Linke, P., Reimann, S., Liebetrau, V., McGinnis, D. F.,
and Wallmann, K. (2015). Quantification of methane
emissions at abandoned gas wells in the central north
sea. Marine and Petroleum Geology, 68:848–860.
Wang, B., Jun, I., Socolofsky, S. A., DiMarco, S. F.,
and Kessler, J. (2020). Dynamics of gas bubbles
from a submarine hydrocarbon seep within the hy-
drate stability zone. Geophysical Research Letters,
47(18):e2020GL089256.
Wang, B. and Socolofsky, S. A. (2015). A deep-sea, high-
speed, stereoscopic imaging system for in situ mea-
surement of natural seep bubble and droplet charac-
teristics. Deep Sea Research Part I: Oceanographic
Research Papers, 104:134–148.
Wang, B., Socolofsky, S. A., Breier, J. A., and Seewald,
J. S. (2016). Observations of bubbles in natural seep
flares at mc 118 and gc 600 using in situ quantitative
imaging. Journal of Geophysical Research: Oceans,
121(4):2203–2230.
Wu, H., Wang, B., DiMarco, S. F., and Tan, L. (2021). Im-
pact of bubble size on turbulent statistics in bubble
plumes in unstratified quiescent water. International
Journal of Multiphase Flow, -(-):103692.
Zelenka, C. (2014). Gas bubble shape measurement and
analysis. In German Conference on Pattern Recogni-
tion, pages 743–749. Springer.
Zielinski, O., Saworski, B., and Schulz, J. (2010). Marine
bubble detection using optical-flow techniques. Jour-
nal of the European Optical Society-Rapid publica-
tions, 5.
A Computer Vision Approach to Compute Bubble Flow of Offshore Wells
671