Bollenrücher, M., Darwiche, J., & Antonietti, J. P. (2023)
Dyadic pattern analysis using longitudinal Actor-
Partner Interdependence Model with Markov chains for
unique case analysis. The Quantitative Methods for
Psychology, 19(3), 230-243.
https://doi.org/10.20982/tqmp.19.3.p230
Cipresso, P., Borghesi, F., & Chirico, A. (2023). Affects
affect affects: A Markov Chain. Frontiers in
Psychology, 14, 1162655.
Dolev, S., Frenkel, S., Cwikel, J., & Zakharov, V. (2020).
Probabilistic Models of Psychological Aspects in
Computer–based Social Interactions. In 2020
International Conference Engineering Technologies
and Computer Science (EnT) (pp. 133-139). IEEE.
Elbing, U., Appelbaum, S., & Ostermann, T. (2022).
Adverse events and contradictory effects of
benzodiazepine in a case with intellectual disability and
challenging behaviour. Journal of intellectual
disabilities, 17446295221134420.
https://doi.org/10.1177/17446295221134420
Evans, S. (2004). Attachment in old age: Bowlby and
others. In S. Evans & J. Garner (Eds.), Talking over the
years: A handbook of dynamic psychotherapy with
older adults (pp. 43–56). Brunner-Routledge.
Fearon, R. M. P., & Roisman, G. I. (2017). Attachment
theory: Progress and future directions. Current Opinion
in Psychology, 15, 131–136.
https://doi.org/10.1016/j.copsyc.2017.03.002
George, C., & West, M. (2004). The Adult Attachment
Projective: Measuring individual differences in
attachment security using projective methodology. In
M. J. Hilsenroth & D. L. Segal (Eds.), Comprehensive
handbook of psychological assessment, Vol. 2.
Personality assessment (pp. 431–447). John Wiley &
Sons, Inc..
Grimm, J., Hempel, W. E., Gerst, H., Richter, K., &
Hempel, B. (1988). Assessment of prognosis with
Markov chains in chronic cardiovascular diseases in
relation to various therapies. Zeitschrift fur die Gesamte
Innere Medizin und Ihre Grenzgebiete, 43(8), 205-209.
Hesse, E. (1999). The adult attachment interview:
Historical and current perspectives. In J. Cassidy & P.
R. Shaver (Eds.), Handbook of attachment: Theory,
research, and clinical applications (pp. 395–433). The
Guilford Press.
Insel, T. R. (1997). A neurobiological basis of social
attachment. American Journal of Psychiatry, 154(6),
726-735.
Kammermeier, M., Duran Perez, L., König, L., & Paulus,
M. (2020). Attachment security and attention to facial
emotional expressions in preschoolers: An eye‐tracking
study. British Journal of Developmental Psychology,
38(2), 167-185.
Kragel, P. A., Hariri, A. R., & LaBar, K. S. (2022). The
temporal dynamics of spontaneous emotional brain
states and their implications for mental health. Journal
of cognitive neuroscience
, 34(5), 715-728.
https://doi.org/10.1162/jocn_a_01787
Kriedel, T. (1979). Die Prognose von Therapieerfolgen
mittels Markov-Ketten: Eine Anwendung auf
Epilepsieambulanzen. Methods of Information in
Medicine, 18(01), 31-35. https://doi.org/10.1055/s-
0038-1636451
Lindström, J., & Kokko, H. (2002). Cohort effects and
population dynamics. Ecology Letters, 5(3), 338-344.
https://doi.org/10.1046/j.1461-0248.2002.00317.x
Lu, K. H. (1966). A path-probability approach to
irreversible Markov chains with an application in
studying the dental caries process. Biometrics, 22(4),
791-809. https://doi.org/10.2307/2528075
Main, M., Hesse, E., & Goldwyn, R. (2008). Studying
differences in language usage in recounting attachment
history: An introduction to the AAI. In H. Steele & M.
Steele (Eds.), Clinical applications of the Adult
Attachment Interview (pp. 31–68). The Guilford Press.
https://psycnet.apa.org/record/2008-04549-002
Paxinou, E., Kalles, D., Panagiotakopoulos, C. T., &
Verykios, V. S. (2021). Analyzing sequence data with
Markov chain models in scientific experiments. SN
Computer Science, 2, 1-14.
https://doi.org/10.1007/s42979-021-00768-5
Prasetio, B. H., Tamura, H., & Tanno, K. (2020). Deep
time-delay Markov network for prediction and
modeling the stress and emotions state transition.
Scientific Reports, 10(1), 18071.
https://doi.org/10.1038/s41598-020-75155-w
Privizzini, A. (2017). The Child Attachment Interview: A
Narrative Review. Frontiers in Psychology, 8, 384.
https://doi.org/10.3389/fpsyg.2017.00384
Spedicato, G. A., Kang, T. S., Yalamanchi, S. B., Yadav,
D., & Cordón, I. (2016). The markovchain package: a
package for easily handling Discrete Markov Chains in
R. Accessed Dec.
Strauss, G. P., Zamani Esfahlani, F., Visser, K. F.,
Dickinson, E. K., Gruber, J., & Sayama, H. (2019).
Mathematically modeling emotion regulation
abnormalities during psychotic experiences in
schizophrenia. Clinical Psychological Science, 7(2),
216-233.
Strauss, G. P., Esfahlani, F. Z., Raugh, I. M., Luther, L., &
Sayama, H. (2023). Markov chain analysis indicates
that positive and negative emotions have abnormal
temporal interactions during daily life in schizophrenia.
Journal of Psychiatric Research, 164, 344-349.
https://doi.org/10.1016/j.jpsychires.2023.06.025
Sükei, E., Norbury, A., Perez-Rodriguez, M. M., Olmos, P.
M., & Artés, A. (2021). Predicting emotional states
using behavioral markers derived from passively
sensed data: data-driven machine learning approach.
JMIR mHealth and uHealth, 9(3), e24465.
https://doi.org/10.2196/24465
Sugimoto, F., Kimura, M., & Takeda, Y. (2022).
Investigation of the optimal time interval between task-
irrelevant auditory probes for evaluating mental
workload in the shortest possible time. International
Journal of Psychophysiology, 177, 103-110.
https://doi.org/10.1016/j.ijpsycho.2022.04.013
Target, M., Fonagy, P., & Shmueli-Goetz, Y. (2003).
Attachment representations in school-age children: the
development of the child attachment interview (CAI).