Hastings, J., West, R., Michie, S., Cox, S., & Notley, C.
(2022). Ontologies for the Behavioural and Social
Sciences: Opportunities and challenges. Workshop on
Ontologies for the Behavioural and Social Sciences
(OntoBess 2021).
Hicks, A., Hanna, J., Welch, D., Brochhausen, M., &
Hogan, W. R. (2016). The ontology of medically related
social entities: recent developments. Journal of
Biomedical Semantics, 7(1), 1-4.
Husáková, M., & Bureš, V. (2020). Formal ontologies in
information systems development: a systematic review.
Information, 11(2), 66.
Ioannidis, J. P. (2016). The mass production of redundant,
misleading, and conflicted systematic reviews and
meta‐analyses. The Milbank Quarterly, 94(3), 485.
Jardim, P. S. J., Rose, C. J., Ames, H. M., Echavez, J. F. M.,
Van de Velde, S., & Muller, A. E. (2022). Automating
risk of bias assessment in systematic reviews: a real-
time mixed methods comparison of human researchers
to a machine learning system. BMC medical research
methodology, 22(1), 167.
Langlois, É. V., Daniels, K., & Akl, E. A. (2018). Evidence
synthesis for health policy and systems: A methods
guide. World Health Organization.
Lawson, K. M., & Robins, R. W. (2021). Sibling constructs:
What are they, why do they matter, and how should you
handle them? Personality and Social Psychology
Review, 25(4), 344-366.
Lewis, J., Schneegans, S., & Straza, T. (2021). UNESCO
Science Report: The race against time for smarter
development (Vol. 2021): Unesco Publishing.
Mac Aonghusa, P., & Michie, S. (2020). Artificial
intelligence and behavioral science through the looking
glass: Challenges for real-world application. Annals of
Behavioral Medicine, 54(12), 942-947.
Mathes, T., Klaßen, P., & Pieper, D. (2017). Frequency of
data extraction errors and methods to increase data
extraction quality: a methodological review. BMC
Medical Research Methodology, 17(1), 1-8.
Michie, S., Thomas, J., Mac Aonghusa, P., West, R.,
Johnston, M., Kelly, M. P., O’Mara-Eves, A. (2020).
The Human Behaviour-Change Project: An artificial
intelligence system to answer questions about changing
behaviour. Wellcome Open Research, 5.
Moore, R. A., Fisher, E., & Eccleston, C. (2022).
Systematic reviews do not (yet) represent the ‘gold
standard’of evidence: A position paper. European
Journal of Pain, 26(3), 557-566.
Niforatos, J. D., Chaitoff, A., Weaver, M., Feinstein, M. M.,
& Johansen, M. E. (2020). Pediatric literature shift:
Growth of meta-analyses was 23 times greater than
growth of randomized trials. Journal of Clinical
Epidemiology, 121, 112-114.
Oliveira, L., Rocha Silva, R., & Bernardino, J. (2021). Wine
Ontology Influence in a Recommendation System. Big
Data and Cognitive Computing, 5(2), 16.
Poldrack, R. A., & Yarkoni, T. (2016). From brain maps to
cognitive ontologies: informatics and the search for
mental structure. Annual review of psychology, 67
, 587-
612.
Roberts, I., & Ker, K. (2015). How systematic reviews
cause research waste. The Lancet, 386(10003), 1536.
Salvador-Oliván, J. A., Marco-Cuenca, G., & Arquero-
Avilés, R. (2019). Errors in search strategies used in
systematic reviews and their effects on information
retrieval. JMLA, 107(2), 210.
Sharp, C., Kaplan, R. M., & Strauman, T. J. (2023). The use
of ontologies to accelerate the behavioral sciences:
Promises and challenges. Current Directions in
Psychological Science, 32(5), 418-426.
Shemilt, I., Arno, A., Thomas, J., Lorenc, T., Khouja, C.,
Raine, G., Wright, K. (2021). Cost-effectiveness of
Microsoft Academic Graph with machine learning for
automated study identification in a living map of
coronavirus disease 2019 (COVID-19) research.
Wellcome Open Research, 6, 210.
Signore, A., & Campagna, G. (2023). Evidence-based
medicine: reviews and meta-analysis. Clinical and
Translational Imaging, 11(2), 109-112.
Simera, I., Moher, D., Hirst, A., Hoey, J., Schulz, K. F., &
Altman, D. G. (2010). Transparent and accurate
reporting increases reliability, utility, and impact of
your research: reporting guidelines and the EQUATOR
Network. BMC Medicine, 8(1), 1-6.
Sumner, J. A., Carey, R. N., Michie, S., Johnston, M.,
Edmondson, D., & Davidson, K. W. (2018). Using
rigorous methods to advance behaviour change science.
Nature Human Behaviour, 2(11), 797-799.
Thirunavukarasu, A. J., Ting, D. S. J., Elangovan, K.,
Gutierrez, L., Tan, T. F., & Ting, D. S. W. (2023).
Large language models in medicine. Nature Medicine,
29(8), 1930-1940.
Wang, Z., Nayfeh, T., Tetzlaff, J., O’Blenis, P., & Murad,
M. H. (2020). Error rates of human reviewers during
abstract screening in systematic reviews. PLoS ONE,
15(1), e0227742.
West, R. (2020). An online Paper Authoring Tool (PAT) to
improve reporting of, and synthesis of evidence from,
trials in behavioral sciences. Health Psychology, 39(9),
846.
West, R., Bonin, F., Thomas, J., Wright, A., Mac
Aonghusa, P., Gleize, M., Johnston, M. (2023). Using
machine learning to extract information and predict
outcomes from reports of randomised trials of smoking
cessation interventions in the HBCP. Wellcome Open
Research, 8, 452.
Wright, A. J., Norris, E., Finnerty, A. N., Marques, M. M.,
Johnston, M., Kelly, M. P., Michie, S. (2020).
Ontologies relevant to behaviour change interventions:
A method for their development. Wellcome Open
Research, 5.