
Figure 3: Visualizing the results of Que.1 with Grafana.
4 COMPONENTE 2, INVESTIMENTO 1.4 - D.D.
1032 17/06/2022, CN00000022). This manuscript re-
flects only the authors’ views and opinions, neither
the European Union nor the European Commission
can be considered responsible for them.
REFERENCES
Aguilar-Calder
´
on, J.-A., Tripp-Barba, C., Zald
´
ıvar-Colado,
A., and Aguilar-Calder
´
on, P.-A. (2022). Requirements
engineering for internet of things (IoT) software sys-
tems development: A systematic mapping study. Ap-
plied Sciences, 12(15):7582.
Andr
´
e, G. et al. (2023). LambdAgrIoT: a new architecture
for agricultural autonomous robots’ scheduling: from
design to experiments. Cluster Computing, 26:2993–
3015.
Bimonte, S., Antonelli, L., and Rizzi, S. (2021a).
Requirements-driven data warehouse design based on
enhanced pivot tables. Requir. Eng., 26(1):43–65.
Bimonte, S. et al. (2021b). On designing and implementing
agro-ecology IoT applications: Issues from applied
research projects. In Proc. EDOC, pages 204–209,
Gold Coast, Australia.
Bimonte, S. et al. (2023). Data-centric UML profile for
agroecology applications: Agricultural autonomous
robots monitoring case study. Comput. Sci. Inf. Syst.,
20(1):459–489.
Costa, B., Pires, P. F., and Delicato, F. C. (2017). Spec-
ifying functional requirements and QoS parameters
for IoT systems. In Proc. DASC/PiCom/DataCom/
CyberSciTech, pages 407–414, Orlando, USA.
Fortino, G. et al. (2018). Agent-oriented cooperative smart
objects: From IoT system design to implementation.
IEEE Trans. on Systems, Man, and Cybernetics: Sys-
tems, 48(11):1939–1956.
Golab, L. and
¨
Ozsu, M. T. (2003). Issues in data stream
management. ACM Sigmod Record, 32(2):5–14.
Gomes, H. M., Read, J., Bifet, A., Barddal, J. P., and
Gama, J. (2019). Machine learning for streaming data:
state of the art, challenges, and opportunities. ACM
SIGKDD Explorations Newsletter, 21(2):6–22.
Kaleem, S., Ahmed, S., Ullah, F., Babar, M., Sheeraz, N.,
and Hadi, F. (2020). An improved RE framework for
IoT-oriented smart applications using integrated ap-
proach. In Proc. AECT, pages 1–6.
Laplante, N. L., Laplante, P. A., and Voas, J. M. (2016).
Stakeholder identification and use case representation
for internet-of-things applications in healthcare. IEEE
Systems Journal, 12(2):1589–1597.
Laplante, P. and Kassab, M. (2022). Requirements Engi-
neering for Software and Systems. Auerbach Publica-
tions, New York, 2nd edition.
Lim, S., Henriksson, A., and Zdravkovic, J. (2021). Data-
driven requirements elicitation: A systematic litera-
ture review. SN Computer Science, 2:1–35.
Meacham, S. and Phalp, K. (2016). Requirements engineer-
ing methods for an internet of things application: fall-
detection for ambient assisted living. In Proc. BCS
SQM/Inspire Conference, pages –.
Mezghani, E., Exposito, E., and Drira, K. (2017). A model-
driven methodology for the design of autonomic and
cognitive IoT-based systems: Application to health-
care. IEEE Trans. on Emerging Topics in Computa-
tional Intelligence, 1(3):224–234.
Pohl, K. and Rupp, C. (2015). Requirements Engineering
Fundamentals. Rocky Nook, 2nd edition.
Rafique, W., Zhao, X., Yu, S., Yaqoob, I., Imran, M.,
and Dou, W. (2020). An application development
framework for internet-of-things service orchestra-
tion. IEEE Internet of Things Jour., 7(5):4543–4556.
Salcedo, J. A. et al. (2021). Modeling non-functional re-
quirements of a reactive system. In Proc. iStar Work-
shop, pages 15–20, St. John’s, Canada.
Silva, D., Gonc¸alves, T. G., and da Rocha, A. R. C. (2019).
A requirements engineering process for IoT systems.
In Proc. Brazilian Symp. on Software Quality, pages
204–209, Fortaleza, Brazil.
Silva, D., Gonc¸alves, T. G., and Travassos, G. H. (2021).
A technology to support the building of requirements
documents for IoT software systems. In Proc. Brazil-
ian Symp. on Software Quality, page 4, S
˜
ao Lu
´
ıs,
Brazil.
Silva, E., Fidalgo, R., Ferro, M., and Franco, N. (2023).
Visual query languages to design complex queries: a
systematic literature review. Software and Systems
Modeling, 22:1217–1249.
Simoens, P., Dragone, M., and Saffiotti, A. (2018). The in-
ternet of robotic things: A review of concept, added
value and applications. International Journal of Ad-
vanced Robotic Systems, 15(1).
Sumalatha, M. and Ananthi, M. (2019). Efficient data re-
trieval using adaptive clustered indexing for continu-
ous queries over streaming data. Cluster Computing,
22(Suppl 5):10503–10517.
Zambonelli, F. (2016). Towards a general software en-
gineering methodology for the internet of things.
arXiv:1601.05569.
ICEIS 2024 - 26th International Conference on Enterprise Information Systems
120