
the AAAI conference on artificial intelligence, volume
33-01, pages 4039–4048.
Kim, J. and Hwang, I. C. (2020). Drawing guidelines for
receiver operating characteristic curve in preparation
of manuscripts. Journal of Korean medical science,
35(24).
Kraus, C., Kadriu, B., Lanzenberger, R., Zarate Jr, C. A.,
and Kasper, S. (2019). Prognosis and improved out-
comes in major depression: a review. Translational
psychiatry, 9(1):127.
Kroenke, K., Spitzer, R. L., and Williams, J. B. (2001). The
PHQ-9: validity of a brief depression severity mea-
sure. Journal of general internal medicine, 16(9):606–
613.
Kroenke, K., Strine, T. W., Spitzer, R. L., Williams, J. B.,
Berry, J. T., and Mokdad, A. H. (2009). The PHQ-8
as a measure of current depression in the general pop-
ulation. Journal of affective disorders, 114(1-3):163–
173.
Liu, Y., Ozodiegwu, I. D., Yu, Y., Hess, R., and Bie, R.
(2017). An association of health behaviors with de-
pression and metabolic risks: data from 2007 to 2014
us national health and nutrition examination survey.
Journal of affective disorders, 217:190–196.
OpenAI (2022). Whisper. https://github.com/openai/
whisper.
Poß-Doering, R., Hegelow, M., Borchers, M., Hartmann,
M., Kruse, J., Kampling, H., Heuft, G., Spitzer, C.,
Wild, B., Szecsenyi, J., et al. (2021). Evaluating the
structural reform of outpatient psychotherapy in ger-
many (es-rip trial)-a qualitative study of provider per-
spectives. BMC Health Services Research, 21(1):1–
14.
Roberts, L. W., Chan, S., and Torous, J. (2018). New tests,
new tools: mobile and connected technologies in ad-
vancing psychiatric diagnosis. NPJ Digital Medicine,
1(1):20176.
Rodrigues Makiuchi, M., Warnita, T., Uto, K., and Shin-
oda, K. (2019). Multimodal fusion of bert-cnn and
gated cnn representations for depression detection. In
Proceedings of the 9th International on Audio/Visual
Emotion Challenge and Workshop, pages 55–63.
Roh, T., Hong, S., and Yoo, H.-J. (2014). Wearable de-
pression monitoring system with heart-rate variability.
In 2014 36th Annual International Conference of the
IEEE Engineering in Medicine and Biology Society,
pages 562–565. IEEE.
Schmitt, A., Kulzer, B., and Hermanns, N. (2015).
German version of the GRID Hamilton Rat-
ing Scale for Depression (GRID-HAMD).
10.13140/RG.2.1.3569.0725.
Senn, S., Tlachac, M., Flores, R., and Rundensteiner, E.
(2022). Ensembles of BERT for depression classifica-
tion. In 2022 44th Annual International Conference of
the IEEE Engineering in Medicine & Biology Society
(EMBC), pages 4691–4694.
Sheehan, D. V., Lecrubier, Y., Sheehan, K. H., Amorim, P.,
Janavs, J., Weiller, E., Hergueta, T., Baker, R., Dun-
bar, G. C., et al. (1998). The mini-international neu-
ropsychiatric interview (mini): the development and
validation of a structured diagnostic psychiatric inter-
view for DSM-IV and ICD-10. Journal of clinical
psychiatry, 59(20):22–33.
Shin, D., Kim, K., Lee, S.-B., Lee, C., Bae, Y. S., Cho, W. I.,
Kim, M. J., Hyung Keun Park, C., Chie, E. K., Kim,
N. S., et al. (2022). Detection of depression and sui-
cide risk based on text from clinical interviews using
machine learning: possibility of a new objective diag-
nostic marker. Frontiers in psychiatry, 13:801301.
Smarr, K. L. and Keefer, A. L. (2011). Measures of
depression and depressive symptoms: Beck depres-
sion inventory-II (BDI-II), center for epidemiologic
studies depression scale (CES-D), geriatric depression
scale (GDS), hospital anxiety and depression scale
(HADS), and patient health questionnaire-9 (PHQ-9).
Arthritis care & research, 63(S11):S454–S466.
Smith, L. T., Levita, L., Amico, F., Fagan, J., Yek, J. H.,
Brophy, J., Zhang, H., and Arvaneh, M. (2020). Us-
ing resting state heart rate variability and skin conduc-
tance response to detect depression in adults. In 2020
42nd annual international conference of the IEEE
engineering in medicine & biology society (EMBC),
pages 5004–5007. IEEE.
Thom, J., Bretschneider, J., M
¨
ullender, S., Becker, M., and
Jacobi, F. (2015). Regionale variationen der ambu-
lanten prim
¨
ar-und fach
¨
arztlichen versorgung psychis-
cher st
¨
orungen. Die Psychiatrie, 12(04):247–254.
Torous, J., Staples, P., and Onnela, J.-P. (2015). Realizing
the potential of mobile mental health: new methods
for new data in psychiatry. Current psychiatry reports,
17:1–7.
Victor, E., Aghajan, Z. M., Sewart, A. R., and Christian,
R. (2019). Detecting depression using a framework
combining deep multimodal neural networks with a
purpose-built automated evaluation. Psychological
assessment, 31(8):1019.
Villatoro-Tello, E., Ramirez-de-la Rosa, G., G
´
atica-P
´
erez,
D., Magimai.-Doss, M., and Jim
´
enez-Salazar, H.
(2021). Approximating the mental lexicon from clin-
ical interviews as a support tool for depression detec-
tion. In Proceedings of the 2021 International Con-
ference on Multimodal Interaction, pages 557–566.
Williams, J. B., Kobak, K. A., Bech, P., Engelhardt, N.,
Evans, K., Lipsitz, J., Olin, J., Pearson, J., and Kalali,
A. (2008). The GRID-HAMD: standardization of the
hamilton depression rating scale. International clini-
cal psychopharmacology, 23(3):120–129.
Zhang, B., Zhou, W., Cai, H., Su, Y., Wang, J., Zhang, Z.,
and Lei, T. (2020). Ubiquitous depression detection of
sleep physiological data by using combination learn-
ing and functional networks. IEEE Access, 8:94220–
94235.
Zhang, T., Schoene, A. M., Ji, S., and Ananiadou, S. (2022).
Natural language processing applied to mental illness
detection: a narrative review. NPJ digital medicine,
5(1):46.
AI-Supported Diagnostic of Depression Using Clinical Interviews: A Pilot Study
507