
worth 16x16 words: Transformers for image recogni-
tion at scale. arXiv preprint arXiv:2010.11929.
Feng, Y., Zhang, Z., Zhao, X., Ji, R., and Gao, Y. (2018).
Gvcnn: Group-view convolutional neural networks
for 3d shape recognition. In CVPR.
Han, T., Ai, D., Li, X., Fan, J., Song, H., Wang, Y., and
Yang, J. (2023). Coronary artery stenosis detection via
proposal-shifted spatial-temporal transformer in x-ray
angiography. Computers in Biology and Medicine.
Johnson, N. P., Johnson, D. T., Kirkeeide, R. L., Berry, C.,
De Bruyne, B., Fearon, W. F., Oldroyd, K. G., Pijls,
N. H., and Gould, K. L. (2015). Repeatability of frac-
tional flow reserve despite variations in systemic and
coronary hemodynamics. JACC: Cardiovascular In-
terventions, 8(8):1018–1027.
Knuuti, J. and Revenco, V. (2020). 2019 esc guidelines
for the diagnosis and management of chronic coronary
syndromes. European heart journal, 41(5):407–477.
Ma, H., Ambrosini, P., and van Walsum, T. (2017). Fast
prospective detection of contrast inflow in x-ray an-
giograms with convolutional neural network and re-
current neural network. In MICCAI.
Moon, J. H., Cha, W. C., Chung, M. J., Lee, K.-S., Cho,
B. H., Choi, J. H., et al. (2021). Automatic stenosis
recognition from coronary angiography using convo-
lutional neural networks. Computer methods and pro-
grams in biomedicine, 198:105819.
Neumann, F.-J., Sousa-Uva, M., Ahlsson, A., Alfonso, F.,
Banning, A. P., Benedetto, U., Byrne, R. A., Col-
let, J.-P., Falk, V., Head, S. J., J
¨
uni, P., Kastrati, A.,
Koller, A., Kristensen, S. D., Niebauer, J., Richter,
D. J., Seferovi
´
c, P. M., Sibbing, D., Stefanini, G. G.,
Windecker, S., Yadav, R., Zembala, M. O., and Group,
E. S. D. (2018). 2018 ESC/EACTS Guidelines on my-
ocardial revascularization. European Heart Journal.
Ovalle-Magallanes, E., Avina-Cervantes, J. G., Cruz-
Aceves, I., and Ruiz-Pinales, J. (2022). Hybrid
classical–quantum convolutional neural network for
stenosis detection in x-ray coronary angiography. Ex-
pert Systems with Applications, 189:116112.
Pennisi, M., Salanitri, F. P., Bellitto, G., Palazzo, S., Bagci,
U., and Spampinato, C. (2023). A privacy-preserving
walk in the latent space of generative models for med-
ical applications. In MICCAI.
Proietto Salanitri, F., Bellitto, G., Irmakci, I., Palazzo, S.,
Bagci, U., and Spampinato, C. (2021). Hierarchical 3d
feature learning forpancreas segmentation. In MLMI
(MICCAI workshop).
Rodrigues, D. L., Menezes, M. N., Pinto, F. J., and Oliveira,
A. L. (2021). Automated detection of coronary artery
stenosis in x-ray angiography using deep neural net-
works. arXiv preprint arXiv:2103.02969.
Salanitri, F. P., Bellitto, G., Palazzo, S., Irmakci, I., Wal-
lace, M., Bolan, C., Engels, M., Hoogenboom, S.,
Aldinucci, M., Bagci, U., et al. (2022). Neural trans-
formers for intraductal papillary mucosal neoplasms
(ipmn) classification in mri images. In EMBC.
Su, H., Maji, S., Kalogerakis, E., and Learned-Miller, E.
(2015). Multi-view convolutional neural networks for
3d shape recognition. In ICCV.
Tomar, N. K., Jha, D., Bagci, U., and Ali, S. (2022). Tganet:
Text-guided attention for improved polyp segmenta-
tion. In International Conference on Medical Im-
age Computing and Computer-Assisted Intervention,
pages 151–160. Springer.
Tonino, P. A., De Bruyne, B., Pijls, N. H., Siebert, U.,
Ikeno, F., vant Veer, M., Klauss, V., Manoharan, G.,
Engstrøm, T., Oldroyd, K. G., et al. (2009). Fractional
flow reserve versus angiography for guiding percuta-
neous coronary intervention. New England Journal of
Medicine, 360(3):213–224.
Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., and
Paluri, M. (2018). A closer look at spatiotemporal
convolutions for action recognition. In Proceedings of
the IEEE conference on Computer Vision and Pattern
Recognition, pages 6450–6459.
Valanarasu, J. M. J., Oza, P., Hacihaliloglu, I., and Pa-
tel, V. M. (2021). Medical transformer: Gated
axial-attention for medical image segmentation. In
Medical Image Computing and Computer Assisted
Intervention–MICCAI 2021: 24th International Con-
ference, Strasbourg, France, September 27–October
1, 2021, Proceedings, Part I 24, pages 36–46.
Springer.
Wu, W., Zhang, J., Xie, H., Zhao, Y., Zhang, S., and Gu,
L. (2020). Automatic detection of coronary artery
stenosis by convolutional neural network with tempo-
ral constraint. Computers in biology and medicine,
118:103657.
Xie, S., Sun, C., Huang, J., Tu, Z., and Murphy, K. (2018).
Rethinking spatiotemporal feature learning: Speed-
accuracy trade-offs in video classification. In Pro-
ceedings of the European conference on computer vi-
sion (ECCV), pages 305–321.
Xue, W., Brahm, G., Pandey, S., Leung, S., and Li, S.
(2018). Full left ventricle quantification via deep mul-
titask relationships learning. Medical image analysis.
Zhang, D., Yang, G., Zhao, S., Zhang, Y., Ghista, D.,
Zhang, H., and Li, S. (2020). Direct quantification of
coronary artery stenosis through hierarchical attentive
multi-view learning. IEEE Transactions on Medical
Imaging.
Zhang, D., Yang, G., Zhao, S., Zhang, Y., Zhang, H.,
and Li, S. (2019). Direct quantification for coro-
nary artery stenosis using multiview learning. In In-
ternational Conference on Medical Image Computing
and Computer-Assisted Intervention, pages 449–457.
Springer.
Zhao, C., Tang, H., McGonigle, D., He, Z., Zhang, C.,
Wang, Y.-P., Deng, H.-W., Bober, R., and Zhou, W.
(2021a). A new approach to extracting coronary ar-
teries and detecting stenosis in invasive coronary an-
giograms. arXiv preprint arXiv:2101.09848.
Zhao, C., Vij, A., Malhotra, S., Tang, J., Tang, H., Pienta,
D., Xu, Z., and Zhou, W. (2021b). Automatic extrac-
tion and stenosis evaluation of coronary arteries in in-
vasive coronary angiograms. Computers in Biology
and Medicine, 136:104667.
BIOIMAGING 2024 - 11th International Conference on Bioimaging
312