
Behrisch, M., Streeb, D., Stoffel, F., Seebacher, D., Mate-
jek, B., Weber, S. H., Mittelst
¨
adt, S., Pfister, H., and
Keim, D. (2019). Commercial Visual Analytics Sys-
tems–Advances in the Big Data Analytics Field. IEEE
Transactions on Visualization and Computer Graph-
ics, 25(10):3011–3031.
Booshehri, M., Emele, L., Fl
¨
ugel, S., F
¨
orster, H., Frey,
J., Frey, U., Glauer, M., Hastings, J., Hofmann, C.,
Hoyer-Klick, C., H
¨
ulk, L., Kleinau, A., Knosala, K.,
Kotzur, L., Kuckertz, P., Mossakowski, T., Muschner,
C., Neuhaus, F., Pehl, M., Robinius, M., Sehn, V., and
Stappel, M. (2021). Introducing the Open Energy On-
tology: Enhancing data interpretation and interfacing
in energy systems analysis. Energy and AI, 5:100074.
Correll, M., Li, M., Kindlmann, G., and Scheidegger, C.
(2019). Looks Good To Me: Visualizations As San-
ity Checks. IEEE Transactions on Visualization and
Computer Graphics, 25(1):83–0–839.
Data Science Association (2023). About the Data Science
Association. https://www.datascienceassn.org/. [Ac-
cessed 2023-05-02].
Gadhave, K., Cutler, Z., and Lex, A. (2022). Reusing Inter-
active Analysis Workflows. Computer Graphics Fo-
rum, 41:133–144.
Gamalielsson, J. and Lundell, B. (2021). On Engagement
With ICT Standards and Their Implementations in
Open Source Software Projects: Experiences and In-
sights From the Multimedia Field. International Jour-
nal of Standardization Research (IJSR), 19:1–28.
Gartner, Inc. (2023). Analytics and Business
Intelligence Platforms Reviews and Rat-
ings. https://www.gartner.com/reviews/market/
analytics-business-intelligence-platforms. [Accessed
2023-11-20].
Hameed, M. and Naumann, F. (2020). Data Preparation: A
Survey of Commercial Tools. ACM SIGMOD Record,
49(3):18—-29.
Kandel, S., Paepcke, A., Hellerstein, J. M., and Heer, J.
(2012). Enterprise Data Analysis and Visualization:
An Interview Study. IEEE Transactions on Visualiza-
tion and Computer Graphics, 18:2917–2926.
Klettke, M., Lutsch, A., and St
¨
orl, U. (2021). Measuring
Data Changes in Data Engineering and their Impact
on Explainability and Algorithm Fairness. Datenbank
Spektrum, 21:245—-249.
Milani, A. M. P., Loges, L. A., Paulovich, F. V., and
Manssour, I. H. (2021). PrAVA: Preprocessing pro-
filing approach for visual analytics. Information Visu-
alization, 20(2-3):101–122.
Munzner, T. (2014). Visualization Analysis and Design. AK
Peters/CRC Press.
Raj, R. K., Parrish, A., Impagliazzo, J., Romanowski, C. J.,
Aly, S. G., Bennett, C. C., Davis, K. C., McGettrick,
A., Pereira, T. S. M., and Sundin, L. (2019). An
Empirical Approach to Understanding Data Science
and Engineering Education. In Proceedings of the
Working Group Reports on Innovation and Technol-
ogy in Computer Science Education, ITiCSE-WGR
’19, pages 73—-87, Aberdeen, Scotland, UK. ACM.
Ruddle, R. A., Cheshire, J., and Fernstad, S. J. (2023).
Tasks and Visualizations Used for Data Profiling: A
Survey and Interview Study. IEEE Transactions on
Visualization and Computer Graphics (Early Access).
Satyanarayan, A., Moritz, D., Wongsuphasawat, K., and
Heer, J. (2017). Vega-Lite: A Grammar of Interac-
tive Graphics. IEEE Transactions on Visualization
and Computer Graphics, 23(1):341–350.
Schmidt, J. (2022). Visual data science. In Data Science,
Data Visualization, and Digital Twins, chapter 6. In-
techOpen.
Sedlmair, M., Meyer, M., and Munzner, T. (2012). Design
Study Methodology: Reflections from the Trenches
and the Stacks. IEEE Transactions on Visualization
and Computer Graphics, 18(12):2431–2440.
Shrestha, N., Chopra, B., Henley, A. Z., and Parnin, C.
(2023). Detangler: Helping Data Scientists Explore,
Understand, and Debug Data Wrangling Pipelines.
In Proceedings of the IEEE Symposium on Visual
Languages and Human-Centric Computing, VL/HCC
’23, pages 189–198, Washington, DC, USA. IEEE.
Stoiber, C., Ceneda, D., Wagner, M., Schetinger, V.,
Gschwandtner, T., Streit, M., Miksch, S., and Aigner,
W. (2022). Perspectives of visualization onboarding
and guidance in VA. Visual Informatics, 6(1):68–83.
Walny, J., Frisson, C., West, M., Kosminsky, D., Knud-
sen, S., Carpendale, S., and Willett, W. (2020).
Data Changes Everything: Challenges and Opportu-
nities in Data Visualization Design Handoff. IEEE
Transactions on Visualization and Computer Graph-
ics, 26(01):12–22.
Wilkinson, L. (2005). The Grammar of Graphics. Springer,
San Francisco, CA, USA, 2
nd
edition.
Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Apple-
ton, G., Axton, M., Baak, A., Blomberg, N., Boiten,
J.-W., da Silva Santos, L. B., Bourne, P. E., Bouw-
man, J., Brookes, A. J., Clark, T., Crosas, M., Dillo,
I., Dumon, O., Edmunds, S., Evelo, C. T., Finkers, R.,
Gonzalez-Beltran, A., Gray, A. J., Groth, P., Goble,
C., Grethe, J. S., Heringa, J., Hoen, P. A., Hooft,
R., Kuhn, T., Kok, R., Kok, J., Lusher, S. J., Mar-
tone, M. E., Mons, A., Packer, A. L., Persson, B.,
Rocca-Serra, P., Roos, M., van Schaik, R., Sansone,
S.-A., Schultes, E., Sengstag, T., Slater, T., Strawn,
G., Swertz, M. A., Thompson, M., van der Lei, J.,
van Mulligen, E., Velterop, J., Waagmeester, A., Wit-
tenburg, P., Wolstencroft, K., Jun, Z., and Mons, B.
(2019). The FAIR Guiding Principles for scientific
data management and stewardship. Scientific Data,
3:160018.
Zhang, L., Stoffel, A., Behrisch, M., Mittelstadt, S.,
Schreck, T., Pompl, R., Weber, S., Last, H., and Keim,
D. (2012). Visual analytics for the big data era —
A comparative review of state-of-the-art commercial
systems. In Proceedings of the IEEE Conference on
Visual Analytics Science and Technology, VAST ’12,
pages 173–182, Seattle, WA, USA. IEEE.
IVAPP 2024 - 15th International Conference on Information Visualization Theory and Applications
716