Jena University Hospital is part of the BMBF national
roadmap for research infrastructures. Co-funded by
the European Union (ERC, STAIN-IT, 101088997).
Views and opinions expressed are however those of
the author(s) only and do not necessarily reflect those
of the European Union or the European Research
Council. Neither the European Union nor the granting
authority can be held responsible for them.
REFERENCES
Ali, N., Girnus, S., Rösch, P., Popp, J., & Bocklitz, T.
(2018). Sample-size planning for multivariate data: a
Raman-spectroscopy-based example. Analytical
Chemistry, 90(21), 12485-12492. Doi: 10.1021/acs.
analchem.8b02167.
Cheung, C. Y., Ran, A. R., Wang, S., Chan, V. T. T., Sham,
K., Hilal, et al. (2022). A deep learning model for
detection of Alzheimer’s disease based on retinal
photographs: a retrospective, multicentre case-control
study. Lancet Digital Health, 4(11), 806-815. Doi:
10.1016/S2589-7500(22)00169-8.
Cortes, C., Jackel, L. D., Solla, S. A., Vapnik, V., &
Denker, J. S. (1993). Learning Curves: Asymptotic
Values and Rate of Convergence. In Proceedings of
Advances in Neural Information Processing Systems 6
(NIPS 1993), 327-334.
Foersch, S., Glasner, C., Woerl, A. C., Eckstein, M.,
Wagner, D. C., Schulz, S., Kellers, F., Fernandez, A.,
Tserea, K., Kloth, M., Hartmann, A., Heintz, A.,
Weichert, W., Roth, W., Geppert, C., Kather, J. N., &
Jesinghaus, M. (2023). Multistain deep learning for
prediction of prognosis and therapy response in
colorectal cancer. Nature Medicine, 29(2), 430-439.
Doi:10.1038/s41591-022-02134-1.
Huang, G., Liu, Z., van der Maaten, L., & Weinberger, K.
Q. (2017). Densely connected convolutional networks.
In Proceedings of 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). 4700-4708.
Doi: 10.1109/CVPR.2017.243.
Kather, J. N., Pearson, A. T., Halama, N., Jäger, D., Krause,
J., Loosen, S. H., Marx, A., Boor, P., Tacke, F.,
Neumann, U. P., Grabsch, H. I., Yoshikawa, T.,
Brenner, H., Chang-Claude, J., Hoffmeister, M.,
Trautwein, C., & Luedde, T. (2019). Deep learning can
predict microsatellite instability directly from histology
in gastrointestinal cancer. Nature Medicine, 25(7),
1054-1056. Doi: 10.1038/s41591-019-0462-y.
Kim, H. E., Cosa-Linan, A., Santhanam, N., Jannesari, M.,
Maros, M. E., & Ganslandt, T. (2022). Transfer
learning for medical image classification: a literature
review. BMC Medical Imaging, 22(1), 1-13. Doi:
10.1186/s12880-022-00793-7.
Kohavi, R. (1995). A study of cross-validation and
bootstrap for accuracy estimation and model selection.
In Proceedings of the 14th International Joint
Conference on Artificial Intelligence, 2, 1137-1143.
Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning.
Nature 521, 436-444. Doi:10.1038/nature14539.
Luo, R., & Bocklitz, T. (2023). A systematic study of
transfer learning for colorectal cancer detection.
Informatics in Medicine Unlocked, 40, 1-11. Doi:
10.1016/j.imu.2023.101292.
Morid, M. A., Borjali, A., & Fiol, D. G. (2021). A scoping
review of transfer learning research on medical image
analysis using ImageNet. Computers in Biology and
Medicine, 128, 1-14. Doi: 10.1016/j.compbiomed.
2020.104115.
Mukherjee, S., Tamayo, P., Rogers, S., Rifkin, R., Engle,
A., Campbell, C., Golub, T. R., & Mesirov, J. P. (2003).
Estimating dataset size requirements for classifying
DNA microarray data. Journal of Computational
Biology, 10(2), 119-142. Doi: 10.1089/10665270
3321825928.
Narayan, V., Mall, P. K., Alkhayyat, A., Abhishek, K.,
Kumar, S., & Pandey, P. (2023). Enhance-Net: an
approach to boost the performance of deep learning
model based on real-time medical images.
Journal of
Sensors, 2023, 1-15. Doi: 10.1155/2023/8276738.
Placido, D., Yuan, B., Hjaltelin, J. X., et al. (2023). A deep
learning algorithm to predict risk of pancreatic cancer
from disease trajectories. Nature Medicine, 29(5),
1113–1122. Doi: 10.1038/s41591-023-02332-5.
Rajpurkar, P., Chen, E., Banerjee, O., & Topol, E. J. (2022).
AI in health and medicine. Nature Medicine, 28(1), 31-
38. Doi: 10.1038/s41591-021-01614-0.
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S.,
Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein,
M., Berg, A. C., & Fei-Fei, L. (2015). ImageNet large
scale visual recognition challenge. International
Journal of Computer Vision, 115(3), 211-252. Doi:
10.1007/s11263-015-0816-y.
Samala, R.K., Chan, H.P., Hadjiiski, L., et al. (2019). Breast
cancer diagnosis in digital breast tomosynthesis: effects
of training sample size on multi-stage transfer learning
using deep neural nets. In Proceedings of the IEEE
Transactions on Medical Imaging, 38(3), 686-696. Doi:
TMI.2018.2870343.
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen,
L. C. (2018). MobileNetV2: inverted residuals and
linear bottlenecks. In Proceedings of the IEEE
Computer Society Conference on Computer Vision and
Pattern Recognition, 4510-4520. Doi:
10.1109/CVPR.2018.00474.
Soekhoe, D., & Putten, P.V.D. (2016). On the impact of
data set size in transfer learning using deep neural
networks. In Proceedings of Advances in Intelligent
Data Analysis XV (IDA 2016), 9897, 50-60. Doi:
10.1007/978-3-319-46349-0.
Szegedy, C., Vanhoucke, V., Ioffe, et al. (2016).
Rethinking the Inception architecture for computer
vision. In Proceedings of 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
2818-2826. Doi: 10.1109/CVPR.2016.308.
Viering, T., & Loog, M. (2023). The shape of learning
curves: a review. IEEE Transactions on Pattern