Disease Individuals: A Pilot Study in Clinic and at
Home. Digital biomarkers, 1(1), 52-63.
doi:10.1159/000479018
Channa, A., Ifrim, R.-C., Popescu, D., & Popescu, N.
(2021). A-WEAR Bracelet for Detection of Hand
Tremor and Bradykinesia in Parkinson's Patients.
Sensors, 21(3). doi:10.3390/s21030981
Cole, B. T., Roy, S. H., De Luca, C. J., Nawab, S. H., &
Ieee. (2010, 2010
Aug 30-Sep 04). Dynamic Neural Network Detection of
Tremor and Dyskinesia from Wearable Sensor Data.
Paper presented at the 32nd Annual International
Conference of the IEEE Engineering-in-Medicine-and-
Biology-Society (EMBC 10), Buenos Aires,
ARGENTINA.
Dai, H., Zhang, P., & Lueth, T. C. (2015). Quantitative
Assessment of Parkinsonian Tremor Based on an
Inertial Measurement Unit. Sensors, 15(10), 25055-
25071. doi:10.3390/s151025055
Deuschl, G., Fietzek, U., Klebe, S., & Volkmann, J.
(2003). Chapter 24 Clinical neurophysiology and
pathophysiology of Parkinsonian tremor. In M. Hallett
(Ed.), Handbook of Clinical Neurophysiology (Vol. 1,
pp. 377-396): Elsevier.
Garcia-Magarino, I., Medrano, C., Plaza, I., & Olivan, B.
(2016). A smartphone-based system for detecting hand
tremors in unconstrained environments. Personal and
Ubiquitous Computing, 20(6), 959-971. doi:10.
1007/s00779-016-0956-2
Gil-Martin, M., Montero, J. M., & San-Segundo, R.
(2019). Parkinson's Disease Detection from Drawing
Movements Using Convolutional Neural Networks.
Electronics, 8(8), 10. doi:10.3390/electronics8080907
Gil-Martin, M., San-Segundo, R., Fernandez-Martinez, F.,
& Ferreiros-Lopez, J. (2020). Improving physical
activity recognition using a new deep learning
architecture and post-processing techniques.
Engineering Applications of Artificial Intelligence, 92.
doi:10.1016/j.engappai.2020.103679
Gil-Martin, M., San-Segundo, R., Fernandez-Martinez, F.,
& Ferreiros-Lopez, J. (2021). Time Analysis in
Human Activity Recognition. Neural Processing
Letters. doi:10.1007/s11063-021-10611-w
Gil-Martín, M., San-Segundo, R., Fernández-Martínez, F.,
& de Córdoba, R. (2020). Human activity recognition
adapted to the type of movement. Computers &
Electrical Engineering, 88, 106822. doi:https://doi.
org/10.1016/j.compeleceng.2020.106822
Hathaliya, J. J., Modi, H., Gupta, R., Tanwar, S., Sharma,
P., & Sharma, R. (2022). Parkinson and essential
tremor classification to identify the patient?s risk
based on tremor severity. Computers & Electrical
Engineering, 101. doi:10.1016/j.compeleceng.
2022.107946
Jankovic, J. (2008). Parkinson’s disease: clinical features
and diagnosis. Journal of Neurology, Neurosurgery &
Psychiatry, 79(4), 368-376. doi:10.1136/jnnp.
2007.131045
José, L. C.-V. a. G. E. S. (1995). Effects of parkinsonism
on motor control. Life Sciences, 58(3), 165-176.
doi:https://doi.org/10.1016/0024-3205(95)02237-6
Lang, M., Pfister, F. M. J., Frohner, J., Abedinpour, K.,
Pichler, D., Fietzek, U., . . . Hirche, S. (2019). A
Multi-Layer Gaussian Process for Motor Symptom
Estimation in People With Parkinson's Disease. Ieee
Transactions on Biomedical Engineering, 66(11),
3038-3049. doi:10.1109/tbme.2019.2900002
Portugal, B., Artaud, F., Degaey, I., Roze, E., Fournier, A.,
Severi, G., . . . Elbaz, A. (2023). Association of
Physical Activity and Parkinson Disease in Women.
Long-term Follow-up of the E3N Cohort Study,
101(4), e386-e398. doi:10.1212/wnl.00000000002074
24
Rigas, G., Tzallas, A. T., Tsipouras, M. G., Bougia, P.,
Tripoliti, E. E., Baga, D., . . . Konitsiotis, S. (2012).
Assessment of Tremor Activity in the Parkinson's
Disease Using a Set of Wearable Sensors. Ieee
Transactions on Information Technology in
Biomedicine, 16(3), 478-487. doi:10.1109/titb.2011.
2182616
San-Segundo, R., Manuel Montero, J., Barra-Chicote, R.,
Fernandez, F., & Manuel Pardo, J. (2016). Feature
extraction from smartphone inertial signals for human
activity segmentation. Signal Processing, 120, 359-
372. doi:10.1016/j.sigpro.2015.09.029
San-Segundo, R., Navarro-Hellin, H., Torres-Sanchez, R.,
Hodgins, J., & De la Torre, F. (2019). Increasing
Robustness in the Detection of Freezing of Gait in
Parkinson's Disease. Electronics, 8(2). doi:10.
3390/electronics8020119
Vanrell, S. R., Milone, D. H., & Rufiner, H. L. (2018).
Assessment of Homomorphic Analysis for Human
Activity Recognition From Acceleration Signals. Ieee
Journal of Biomedical and Health Informatics, 22(4),
1001-1010. doi:10.1109/jbhi.2017.2722870
Zhang, S., Wei, Z., Nie, J., Huang, L., Wang, S., & Li, Z.
(2017). A Review on Human Activity Recognition
Using Vision-Based Method. Journal of Healthcare
Engineering, 2017. doi:10.1155/2017/3090343