
ACKNOWLEDGEMENTS
This research was supported by GE Healthcare. We
thank Nicolas Gogin for comments that greatly im-
proved this paper.
We would also like to show our gratitude to the
reviewers for their comments and advices.
REFERENCES
Albelwi, S. and Mahmood, A. (2017). A framework for de-
signing the architectures of deep convolutional neural
networks. Entropy.
Bien, N., Rajpurkar, P., Ball, R. L., Irvin, J., Park, A., Jones,
E., Bereket, M., Patel, B. N., Yeom, K. W., Shpan-
skaya, K., et al. (2018). Deep-learning-assisted di-
agnosis for knee magnetic resonance imaging: devel-
opment and retrospective validation of mrnet. PLoS
medicine.
Cao, X. (2015). A practical theory for designing very deep
convolutional neural networks. Unpublished Techni-
cal Report.
Fei-Fei, L., Deng, J., and Li, K. (2009). Imagenet: Con-
structing a large-scale image database. Journal of vi-
sion.
Gao, L., Zhang, L., Liu, C., and Wu, S. (2020). Handling
imbalanced medical image data: A deep-learning-
based one-class classification approach. Artificial in-
telligence in medicine.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 770–778.
Kim, H. E., Cosa-Linan, A., Santhanam, N., Jannesari, M.,
Maros, M. E., and Ganslandt, T. (2022). Transfer
learning for medical image classification: a literature
review. BMC medical imaging.
Krizhevsky, A., Hinton, G., et al. (2009). Learning multiple
layers of features from tiny images.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Im-
agenet classification with deep convolutional neural
networks. Advances in neural information processing
systems, 25.
LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998).
Gradient-based learning applied to document recogni-
tion. Proceedings of the IEEE, 86(11):2278–2324.
LeCun, Y., Cortes, C., and Burges, C. (2010). Mnist hand-
written digit database. ATT Labs [Online]. Available:
http://yann.lecun.com/exdb/mnist.
Mei, X., Liu, Z., Robson, P. M., Marinelli, B., Huang, M.,
Doshi, A., Jacobi, A., Cao, C., Link, K. E., Yang, T.,
et al. (2022). Radimagenet: an open radiologic deep
learning research dataset for effective transfer learn-
ing. Radiology: Artificial Intelligence.
Ramaswamy, H. G. et al. (2020). Ablation-cam: Vi-
sual explanations for deep convolutional network via
gradient-free localization. In proceedings of the
IEEE/CVF winter conference on applications of com-
puter vision.
Rizk, B., Brat, H., Zille, P., Guillin, R., Pouchy, C., Adam,
C., Ardon, R., and d’Assignies, G. (2021). Menis-
cal lesion detection and characterization in adult knee
mri: a deep learning model approach with external
validation. Physica Medica.
Rong, Y., Leemann, T., Borisov, V., Kasneci, G., and Kas-
neci, E. (2022). A consistent and efficient evalua-
tion strategy for attribution methods. arXiv preprint
arXiv:2202.00449.
Ronneberger, O., Fischer, P., and Brox, T. (2015). U-
net: Convolutional networks for biomedical image
segmentation. In Medical Image Computing and
Computer-Assisted Intervention–MICCAI 2015: 18th
International Conference, Munich, Germany, October
5-9, 2015, Proceedings, Part III 18. Springer.
Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R.,
Parikh, D., and Batra, D. (2017). Grad-cam: Visual
explanations from deep networks via gradient-based
localization. In Proceedings of the IEEE international
conference on computer vision.
Simonyan, K. and Zisserman, A. (2014). Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556.
Wasay, A. and Idreos, S. (2020). More or less: When and
how to build convolutional neural network ensembles.
In International Conference on Learning Representa-
tions.
Zavalsız, M. T., Alhajj, S., Sailunaz, K.,
¨
Ozyer, T., and Al-
hajj, R. (2023). A comparative study of different pre-
trained deeplearning models and custom cnn for pan-
creatic tumor detection. International Arab Journal of
Information Technology.
VISAPP 2024 - 19th International Conference on Computer Vision Theory and Applications
762