
Heinzinger, M., Elnaggar, A., Wang, Y., Dallago, C.,
Nechaev, D., Matthes, F., and Rost, B. (2019). Mod-
eling aspects of the language of life through transfer-
learning protein sequences. BMC bioinformatics,
20(1):1–17.
Henikoff, S. and Henikoff, J. G. (1992). Amino acid sub-
stitution matrices from protein blocks. Proceedings
of the National Academy of Sciences, 89(22):10915–
10919.
Holm, L. and Sander, C. (1993). Protein structure com-
parison by alignment of distance matrices. Journal of
molecular biology, 233(1):123–138.
Holm, L. and Sander, C. (1999). Using dali for structural
comparison of proteins. Current opinion in structural
biology, 9(3):408–415.
Hu, J. X., Thomas, C. E., and Brunak, S. (2016). Network
biology concepts in complex disease comorbidities.
Nature Reviews Genetics, 17(10):615–629.
Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov,
M., Ronneberger, O., Tunyasuvunakool, K., Bates, R.,
ˇ
Z
´
ıdek, A., Potapenko, A., et al. (2021). Highly accu-
rate protein structure prediction with AlphaFold. Na-
ture, 596(7873):583–589.
Kihara, D. and Skolnick, J. (2003). The PDB is a covering
set of small protein structures. Journal of molecular
biology, 334(4):793–802.
Kingma, D. P. and Ba, J. (2014). Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.
Kipf, T. N. and Welling, M. (2016). Semi-supervised clas-
sification with graph convolutional networks. arXiv
preprint arXiv:1609.02907.
Krishna, S. S., Majumdar, I., Grishin, N., Standley, D., Ru-
binson, E., Wei, L., and Rost, B. (1997). The PDB is
a covering set of small protein structures. Journal of
molecular biology, 267(3):638–657.
Kryshtafovych, A., Schwede, T., Topf, M., Fidelis, K.,
and Moult, J. (2019). Critical assessment of meth-
ods of protein structure prediction (CASP)—Round
XIII. Proteins: Structure, Function, and Bioinformat-
ics, 87(12):1011–1020.
Lathrop, R. H. (1994). The protein threading problem with
sequence amino acid interaction preferences is NP-
complete. Protein Engineering, Design and Selection,
7(9):1059–1068.
Lensink, M. F., Velankar, S., Baek, M., Heo, L., Seok, C.,
and Wodak, S. J. (2018). The challenge of model-
ing protein assemblies: the CASP12-CAPRI experi-
ment. Proteins: Structure, Function, and Bioinfor-
matics, 86:257–273.
Liu, Y., Ye, Q., Wang, L., and Peng, J. (2018). Learning
structural motif representations for efficient protein
structure search. Bioinformatics, 34(17):i773–i780.
Meiler, J., M
¨
uller, M., Zeidler, A., and Schm
¨
aschke, F.
(2001). Generation and evaluation of dimension-
reduced amino acid parameter representations by ar-
tificial neural networks. Molecular modeling annual,
7(9):360–369.
Moreau, Y. and Tranchevent, L.-C. (2012). Computa-
tional tools for prioritizing candidate genes: boost-
ing disease gene discovery. Nature Reviews Genetics,
13(8):523–536.
Morris, R., Black, K. A., and Stollar, E. J. (2022). Uncover-
ing protein function: from classification to complexes.
Essays in Biochemistry, 66(3):255–285.
Nair, V. and Hinton, G. E. (2010). Rectified linear units im-
prove restricted boltzmann machines. In International
conference on machine learning, pages 807–814.
Needleman, S. B. and Wunsch, C. D. (1970). A gen-
eral method applicable to the search for similarities
in the amino acid sequence of two proteins. Journal
of molecular biology, 48(3):443–453.
Røgen, P. and Fain, B. (2003). Automatic classifica-
tion of protein structure by using Gauss integrals.
Proceedings of the National Academy of Sciences,
100(1):119–124.
Scarselli, F., Gori, M., Tsoi, A. C., Hagenbuchner, M., and
Monfardini, G. (2008). The graph neural network
model. IEEE Trans. on neural networks, 20(1):61–80.
Shindyalov, I. N. and Bourne, P. E. (1998). Protein struc-
ture alignment by incremental combinatorial exten-
sion (CE) of the optimal path. Protein engineering,
11(9):739–747.
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. (2014). Dropout: a simple way
to prevent neural networks from overfitting. The jour-
nal of machine learning research, 15(1):1929–1958.
Sterling, T. and Irwin, J. J. (2015). ZINC 15 – ligand dis-
covery for everyone. Journal of Chemical Information
and Modeling, 55(11):2324–2337.
Van der Maaten, L. and Hinton, G. (2008). Visualizing data
using t-SNE. Journal of machine learning research,
9(11).
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I.
(2017). Attention is all you need. Advances in neural
information processing systems, 30.
Veli
ˇ
ckovi
´
c, P., Cucurull, G., Casanova, A., Romero, A., Lio,
P., and Bengio, Y. (2017). Graph attention networks.
arXiv preprint arXiv:1710.10903.
Wang, L., Li, Y., and Lazebnik, S. (2016). Learning deep
structure-preserving image-text embeddings. In Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 5005–5013.
Xia, C., Feng, S.-H., Xia, Y., Pan, X., and Shen,
H.-B. (2022). Fast protein structure comparison
through effective representation learning with con-
trastive graph neural networks. PLoS computational
biology, 18(3):e1009986.
Yang, F., Fan, K., Song, D., and Lin, H. (2020). Graph-
based prediction of Protein-protein interactions with
attributed signed graph embedding. BMC bioinfor-
matics, 21(1):1–16.
Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B.,
Salakhutdinov, R. R., and Smola, A. J. (2017). Deep
sets. Advances in neural information processing sys-
tems, 30.
Zhang, C. and DeLisi, C. (1997). A unified statistical frame-
work for sequence comparison and structure compar-
ICPRAM 2024 - 13th International Conference on Pattern Recognition Applications and Methods
590