
Cryptology Conference (CRYPTO), pages 451–468.
Springer.
Ben-Or, M., Goldwasser, S., and Wigderson, A. (1988).
Completeness theorems for non-cryptographic fault-
tolerant distributed computation. In Proceedings of
the twentieth annual ACM symposium on Theory of
computing, pages 351–371.
Canetti, R. (2000). Security and composition of multiparty
cryptographic protocols. Journal of CRYPTOLOGY,
13:143–202.
Catrina, O. and De Hoogh, S. (2010a). Improved primitives
for secure multiparty integer computation. In Interna-
tional Conference on Security and Cryptography for
Networks, pages 182–199. Springer.
Catrina, O. and De Hoogh, S. (2010b). Secure multiparty
linear programming using fixed-point arithmetic. In
Proceedings of 15th European Symposium on Re-
search in Computer Security (ESORICS 2010), pages
134–150. Springer.
Chan, T. H., Shi, E., and Song, D. (2012). Optimal lower
bound for differentially private multi-party aggrega-
tion. In European Symposium on Algorithms, pages
277–288. Springer.
Cheu, A., Smith, A., Ullman, J., Zeber, D., and Zhilyaev,
M. (2019). Distributed differential privacy via shuf-
fling. In Proceedings of 38th Annual International
Conference on the Theory and Applications of Crypto-
graphic Techniques (EUROCRYPT 2019), pages 375–
403. Springer.
Cramer, R., Damg
˚
ard, I., and Maurer, U. (2000). Gen-
eral secure multi-party computation from any lin-
ear secret-sharing scheme. In Proceedings of Inter-
national Conference on the Theory and Application
of Cryptographic Techniques (EUROCRYPT 2000),
pages 316–334. Springer.
Damg
˚
ard, I., Fitzi, M., Kiltz, E., Nielsen, J. B., and Toft,
T. (2006). Unconditionally secure constant-rounds
multi-party computation for equality, comparison, bits
and exponentiation. In Theory of Cryptography Con-
ference, pages 285–304. Springer.
Devlin, J., Chang, M., Lee, K., and Toutanova, K. (2019).
BERT: pre-training of deep bidirectional transformers
for language understanding. pages 4171–4186. Asso-
ciation for Computational Linguistics.
Devroye, L. (2006). Nonuniform random variate genera-
tion. Handbooks in operations research and manage-
ment science, 13:83–121.
Dwork, C., Kenthapadi, K., McSherry, F., Mironov, I., and
Naor, M. (2006). Our data, ourselves: Privacy via
distributed noise generation. In Annual International
Conference on the Theory and Applications of Cryp-
tographic Techniques, pages 486–503. Springer.
Dwork, C. and Roth, A. (2014). The algorithmic foun-
dations of differential privacy. Found. Trends Theor.
Comput. Sci., 9(3–4):211–407.
Eigner, F., Kate, A., Maffei, M., Pampaloni, F., and Pry-
valov, I. (2014). Differentially private data aggrega-
tion with optimal utility. In Proceedings of the 30th
Annual Computer Security Applications Conference,
pages 316–325.
Eriguchi, R., Ichikawa, A., Kunihiro, N., and Nuida, K.
(2021). Efficient noise generation to achieve differ-
ential privacy with applications to secure multiparty
computation. In International Conference on Finan-
cial Cryptography and Data Security, pages 271–290.
Springer.
Gazeau, I., Miller, D., and Palamidessi, C. (2016). Preserv-
ing differential privacy under finite-precision seman-
tics. Theoretical Computer Science, 655:92–108.
Google’sDP (2020). Secure Noise Generation.
Haney, S., Desfontaines, D., Hartman, L., Shrestha, R., and
Hay, M. (2022). Precision-based attacks and interval
refining: how to break, then fix, differential privacy on
finite computers. arXiv preprint arXiv:2207.13793.
Holohan, N. and Braghin, S. (2021). Secure random
sampling in differential privacy. In Computer Se-
curity – ESORICS 2021: 26th European Symposium
on Research in Computer Security, Darmstadt, Ger-
many, October 4–8, 2021, Proceedings, Part II, page
523–542, Berlin, Heidelberg. Springer-Verlag.
Kasiviswanathan, S. P., Lee, H. K., Nissim, K., Raskhod-
nikova, S., and Smith, A. (2011). What can we learn
privately? SIAM Journal on Computing, 40(3):793–
826.
Mironov, I. (2012). On significance of the least signifi-
cant bits for differential privacy. In Proceedings of
the 2012 ACM conference on Computer and commu-
nications security, pages 650–661.
MPFR’slibrary (2021). The GNU MPFR library.
OpenDP (2021). samplers.rs – opendp.
Pedersen, T. P. (1992). Non-interactive and information-
theoretic secure verifiable secret sharing. In Feigen-
baum, J., editor, Advances in Cryptology — CRYPTO
’91, pages 129–140, Berlin, Heidelberg. Springer
Berlin Heidelberg.
Peng, K. and Bao, F. (2010). An efficient range proof
scheme. In 2010 IEEE second international confer-
ence on social computing, pages 826–833. IEEE.
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D.,
Sutskever, I., et al. (2019). Language models are un-
supervised multitask learners. OpenAI blog, 1(8):9.
Shamir, A. (1979). How to share a secret. Communications
of the ACM, 22(11):612–613.
Shi, E., Chan, H., Rieffel, E., Chow, R., and Song, D.
(2011). Privacy-preserving aggregation of time-series
data. In Annual Network & Distributed System Secu-
rity Symposium (NDSS). Internet Society.
Wang, T., Blocki, J., Li, N., and Jha, S. (2017). Locally
differentially private protocols for frequency estima-
tion. In 26th USENIX Security Symposium (USENIX
Security 17), pages 729–745.
Wu, G., He, Y., Wu, J., and Xia, X. (2016). Inherit differ-
ential privacy in distributed setting: Multiparty ran-
domized function computation. In 2016 IEEE Trust-
com/BigDataSE/ISPA, pages 921–928. IEEE.
ICISSP 2024 - 10th International Conference on Information Systems Security and Privacy
592