
5 CONCLUSIONS
The results show the YOLO v8 and Mask R-CNN
as the most accurate ones. The big difference be-
tween these two methods compared to Malaria App
and Cell Pose is in dealing with clumped and over-
lapped RBCs, in which cases both tools present lower
accuracies than YOLO v8 and Mask R-CNN.
As future work, we intend to train convolution
networks to deal specifically with the problem of
clumped groups of RBCs, the main problem in this
task. Moreover, we believe that the problem may
be simplified with a better designed pre-processing
phase, with more robust hole filling and cell separa-
tion procedures. This approach will also be further
investigated.
To have an even more generic CNN, we could add
more images to the training dataset. The difficulty lies
in obtaining and labeling each image, as it is a time-
consuming process. Furthermore, other datasets will
need to be created to identify other diseases, so the
labeling process needs to be improved. So, as we al-
ready have a CNN capable of identifying RBCs, we
can use the prediction result as a starting point to la-
bel more samples in a semi-automatic approach, dras-
tically reducing the labeling time.
REFERENCES
Abadi, M., Agarwal, A., Barham, P., et al. (2015). Tensor-
Flow: Large-scale machine learning on heterogeneous
systems. Software available from tensorflow.org.
Abas, S. M., Abdulazeez, A. M., and Zeebaree, D. (2021).
A yolo and convolutional neural network for the de-
tection and classification of leukocytes in leukemia.
Indones. J. Electr. Eng. Comput. Sci, 25(1).
Abdulla, W. (2017). Mask R-CNN for object detection and
instance segmentation on keras and tensorflow. https:
//github.com/matterport/Mask RCNN.
Devi, S. S., Roy, A., Singha, J., Sheikh, S. A., and Laskar,
R. H. (2018). Malaria infected erythrocyte classifi-
cation based on a hybrid classifier using microscopic
images of thin blood smear. Multimed. Tools Appl.,
77(1):631–660.
Eziefula, A. C., Gosling, R., Hwang, J., Hsiang, M. S.,
Bousema, T., Von Seidlein, L., and Drakeley, C.
(2012). Rationale for short course primaquine in
africa to interrupt malaria transmission. Malaria J.,
11:1–15.
Giacometti, M., Milesi, F., Coppadoro, P. L., Rizzo, A., Fa-
giani, F., Rinaldi, C., Cantoni, M., Petti, D., Albisetti,
E., Sampietro, M., et al. (2021). A lab-on-chip tool
for rapid, quantitative, and stage-selective diagnosis
of malaria. Adv. Sci., page 2004101.
He, K., Gkioxari, G., Doll
´
ar, P., and Girshick, R. (2017).
Mask R-CNN. In Proceedings of the ICCV, pages
2961–2969.
Jocher, G., Chaurasia, A., and Qiu, J. (2023). YOLO by
Ultralytics.
Kingma, D. P. and Ba, J. (2014). Adam: A
method for stochastic optimization. ArXiv preprint
arXiv:1412.6980.
Oliveira, A. D., Carvalho, B. M., Prats, C., Espasa, M.,
i Prat, J. G., Codina, D. L., and Albuquerque, J.
(2018). An automatic system for computing malaria
parasite density in thin blood films. In Progress in Pat-
tern Recognition, Image Analysis, Computer Vision,
and Applications, pages 186–193. Springer Interna-
tional Publishing.
Oliveira, A. D. d. (2019). MalariaApp: Um sistema de
baixo custo para diagn
´
ostico de mal
´
aria em l
ˆ
aminas
de esfregac¸o sangu
´
ıneo usando dispositivos m
´
oveis.
PhD thesis, Universidade Federal do Rio Grande do
Norte.
Organization, W. H. et al. (2021). Who guideline for
malaria, 13 july 2021. Technical report, World Health
Organization.
Otsu, N. (1979). A threshold selection method from gray-
level histograms. IEEE Trans. on Syst. Man Cybern.,
9(1):62–66.
Rehman, A., Abbas, N., Saba, T., Mehmood, Z., Mah-
mood, T., and Ahmed, K. T. (2018). Microscopic
malaria parasitemia diagnosis and grading on bench-
mark datasets. Mic. Res. Tech., 81(9):1042–1058.
Ronneberger, O., Fischer, P., and Brox, T. (2015). U-
Net: Convolutional networks for biomedical image
segmentation. In Pro. of MICCAI, pages 234–241.
Springer.
Schmidt, U., Weigert, M., Broaddus, C., and Myers, G.
(2018). Cell detection with star-convex polygons. In
Proc. of MICCAI, pages 265–273. Springer.
Society, C. C. (2023). Complete blood count (CBC). https:
//cancer.ca/en/treatments/tests-and-procedures/co
mplete-blood-count-cbc#ixzz5JmJ8jOk9. Accessed:
2023-08-28.
Stringer, C., Wang, T., Michaelos, M., and Pachitariu, M.
(2021). Cellpose: A generalist algorithm for cellular
segmentation. Nat. Methods, 18(1):100–106.
Tran, T., Kwon, O.-H., Kwon, K.-R., Lee, S.-H., and Kang,
K.-W. (2018). Blood cell images segmentation using
deep learning semantic segmentation. In Proc. of the
ICECE, pages 13–16. IEEE.
Wang, X., Xu, T., Zhang, J., Chen, S., and Zhang, Y.
(2018). So-yolo based wbc detection with fourier
ptychographic microscopy. IEEE Access, 6:51566–
51576.
Wu, Q., Merchant, F., and Castleman, K. (2010). Micro-
scope Image Processing. Elsevier.
Yeldhos, M. et al. (2018). Red blood cell counter using
embedded image processing techniques. Res. Rep., 2.
HEALTHINF 2024 - 17th International Conference on Health Informatics
694