
REFERENCES
Allison, C., Auyeung, B., and Baron-Cohen, S. (2012). To-
ward brief “red flags” for autism screening: The short
autism spectrum quotient and the short quantitative
checklist in 1,000 cases and 3,000 controls. Journal
of the American Academy of Child & Adolescent Psy-
chiatry, 51(2):202–212.
Archana, P., Sirisha, G., and Chaitanya, R. K. (2023).
Prediction of autism spectrum disorder from high-
dimensional data using machine learning techniques.
Soft Computing, pages 1–7.
Bone, D., Bishop, S. L., Black, M. P., Goodwin, M. S.,
Lord, C., and Narayanan, S. S. (2016). Use of machine
learning to improve autism screening and diagnos-
tic instruments: effectiveness, efficiency, and multi-
instrument fusion. Journal of Child Psychology and
Psychiatry, 57(8):927–937.
Bone, D., Goodwin, M. S., Black, M. P., Lee, C.-C., Au-
dhkhasi, K., and Narayanan, S. (2015). Applying ma-
chine learning to facilitate autism diagnostics: pitfalls
and promises. Journal of autism and developmental
disorders, 45:1121–1136.
Cruz, J. A. and Wishart, D. S. (2006). Applications of
machine learning in cancer prediction and prognosis.
Cancer informatics, 2:117693510600200030.
Das, A. and Rad, P. (2020). Opportunities and challenges
in explainable artificial intelligence (xai): A survey.
arXiv preprint arXiv:2006.11371.
Geetha, B., Sukumar, C., Dhivyadeepa, E., Reddy, J. K.,
and Balachandar, V. (2019). Autism in india: a case–
control study to understand the association between
socio-economic and environmental risk factors. Acta
Neurologica Belgica, 119(3):393–401.
Hasin, D. S., O’brien, C. P., Auriacombe, M., Borges, G.,
Bucholz, K., Budney, A., Compton, W. M., Crowley,
T., Ling, W., Petry, N. M., et al. (2013). Dsm-5 criteria
for substance use disorders: recommendations and ra-
tionale. American Journal of Psychiatry, 170(8):834–
851.
Hauck, F. and Kliewer, N. (2017). Machine learning for
autism diagnostics: applying support vector classifica-
tion. In Int’l Conf. Heal. Informatics Med. Syst, pages
120–123.
Heinsfeld, A. S., Franco, A. R., Craddock, R. C., Buch-
weitz, A., and Meneguzzi, F. (2018). Identification of
autism spectrum disorder using deep learning and the
abide dataset. NeuroImage: Clinical, 17:16–23.
Joseph, R. M. and Tager-Flusberg, H. (1997). An investiga-
tion of attention and affect in children with autism and
down syndrome. Journal of autism and developmental
disorders, 27(4):385–396.
Khan, N. S., Muaz, M. H., Kabir, A., and Islam, M. N.
(2017). Diabetes predicting mhealth application us-
ing machine learning. In 2017 IEEE international
WIE conference on electrical and computer engineer-
ing (WIECON-ECE), pages 237–240. IEEE.
Liu, W., Li, M., and Yi, L. (2016). Identifying children
with autism spectrum disorder based on their face pro-
cessing abnormality: A machine learning framework.
Autism Research, 9(8):888–898.
Lundberg, S. M. and Lee, S.-I. (2017). A unified approach
to interpreting model predictions. Advances in neural
information processing systems, 30.
Raj, S. and Masood, S. (2020). Analysis and detection
of autism spectrum disorder using machine learning
techniques. Procedia Computer Science, 167:994–
1004.
Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). ” why
should i trust you?” explaining the predictions of any
classifier. In Proceedings of the 22nd ACM SIGKDD
international conference on knowledge discovery and
data mining, pages 1135–1144.
Shaw, K. A., Bilder, D. A., McArthur, D., Williams,
A. R., Amoakohene, E., Bakian, A. V., Durkin, M. S.,
Fitzgerald, R. T., Furnier, S. M., Hughes, M. M., et al.
(2023). Early identification of autism spectrum dis-
order among children aged 4 years—autism and de-
velopmental disabilities monitoring network, 11 sites,
united states, 2020. MMWR Surveillance Summaries,
72(1):1.
Thabtah, F. (2017). Autism spectrum disorder screening:
machine learning adaptation and dsm-5 fulfillment. In
Proceedings of the 1st International Conference on
Medical and health Informatics 2017, pages 1–6.
Thabtah, F. (2019). Machine learning in autistic spec-
trum disorder behavioral research: A review and ways
forward. Informatics for Health and Social Care,
44(3):278–297.
Thabtah, F., Kamalov, F., and Rajab, K. (2018). A new
computational intelligence approach to detect autistic
features for autism screening. International journal of
medical informatics, 117:112–124.
van den Bekerom, B. (2017). Using machine learning for
detection of autism spectrum disorder. In Proc. 20th
Student Conf. IT, pages 1–7.
Wall, D. P., Dally, R., Luyster, R., Jung, J.-Y., and DeLuca,
T. F. (2012). Use of artificial intelligence to shorten
the behavioral diagnosis of autism.
Decoding Autism Diagnosis: A Journey Towards Transparency with XAI in ML Models
707