
Becker, B. and Kohavi, R. (1996). Adult.
UCI Machine Learning Repository. DOI:
https://doi.org/10.24432/C5XW20.
Blum, A., Dwork, C., McSherry, F., and Nissim, K.
(2005). Practical privacy: the SuLQ framework. In
Li, C., editor, Proceedings of the Twenty-fourth ACM
SIGACT-SIGMOD-SIGART Symposium on Principles
of Database Systems, June 13-15, 2005, Baltimore,
Maryland, USA, pages 128–138. ACM.
Fan, W., Wang, H., Yu, P. S., and Ma, S. (2003). Is ran-
dom model better? on its accuracy and efficiency. In
Proceedings of the 3rd IEEE International Conference
on Data Mining (ICDM 2003), 19-22 December 2003,
Melbourne, Florida, USA, pages 51–58. IEEE Com-
puter Society.
Fletcher, S. and Islam, M. Z. (2017). Differentially private
random decision forests using smooth sensitivity. Ex-
pert Syst. Appl., 78:16–31.
Fletcher, S. and Islam, M. Z. (2019). Decision Tree Clas-
sification with Differential Privacy: A survey. ACM
Comput. Surv., 52(4):83:1–83:33.
Friedman, A. and Schuster, A. (2010). Data mining with
differential privacy. In Rao, B., Krishnapuram, B.,
Tomkins, A., and Yang, Q., editors, Proceedings of
the 16th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Washington,
DC, USA, July 25-28, 2010, pages 493–502. ACM.
Jagannathan, G., Pillaipakkamnatt, K., and Wright, R. N.
(2012). A practical differentially private random deci-
sion tree classifier. Trans. Data Priv., 5(1):273–295.
Li, N., Li, T., and Venkatasubramanian, S. (2007). t-
Closeness: Privacy beyond k-Anonymity and l-
Diversity. In Chirkova, R., Dogac, A.,
¨
Ozsu, M. T.,
and Sellis, T. K., editors, Proceedings of the 23rd In-
ternational Conference on Data Engineering, ICDE
2007, The Marmara Hotel, Istanbul, Turkey, April 15-
20, 2007, pages 106–115. IEEE Computer Society.
Machanavajjhala, A., Gehrke, J., Kifer, D., and Venkitasub-
ramaniam, M. (2006). l-Diversity: Privacy Beyond
k-Anonymity. In Liu, L., Reuter, A., Whang, K., and
Zhang, J., editors, Proceedings of the 22nd Interna-
tional Conference on Data Engineering, ICDE 2006,
3-8 April 2006, Atlanta, GA, USA, page 24. IEEE
Computer Society.
Mahdi Navaei. Bank Personal Loan Modelling.
https://www.kaggle.com/datasets/ngnnguynthkim/bank-
personal-loan-modellingcsv.
Nojima, R. and Wang, L. (2023). Differential private (ran-
dom) decision tree without adding noise. In Luo, B.,
Cheng, L., Wu, Z., Li, H., and Li, C., editors, Neu-
ral Information Processing - 30th International Con-
ference, ICONIP 2023, Changsha, China, November
20-23, 2023, Proceedings, Part IX, volume 1963 of
Communications in Computer and Information Sci-
ence, pages 162–174. Springer.
Patil, A. and Singh, S. (2014). Differential private ran-
dom forest. In 2014 International Conference on Ad-
vances in Computing, Communications and Informat-
ics, ICACCI 2014, Delhi, India, September 24-27,
2014, pages 2623–2630. IEEE.
Rajkovic, V. (1997). Nursery. UCI Machine Learning
Repository. DOI: https://doi.org/10.24432/C5P88W.
Slijepcevic, D., Henzl, M., Klausner, L. D., Dam, T., Kiese-
berg, P., and Zeppelzauer, M. (2021). k-anonymity
in practice: How generalisation and suppression af-
fect machine learning classifiers. Comput. Secur.,
111:102488.
Stadler, T., Oprisanu, B., and Troncoso, C. (2022). Syn-
thetic Data - Anonymisation Groundhog day. In But-
ler, K. R. B. and Thomas, K., editors, 31st USENIX
Security Symposium, USENIX Security 2022, Boston,
MA, USA, August 10-12, 2022, pages 1451–1468.
USENIX Association.
Sweeney, L. (2002). k-anonymity: A model for protecting
privacy. Int. J. Uncertain. Fuzziness Knowl. Based
Syst., 10(5):557–570.
ICISSP 2024 - 10th International Conference on Information Systems Security and Privacy
860