Du, M., Liu, N., & Hu, X. (2018). Techniques for
Interpretable Machine Learning. http://arxiv.org/abs/
1808.00033
Groenvold, M., Petersen, M. A., Aaronson, N. K., Arraras,
J. I., Blazeby, J. M., Bottomley, A., Fayers, P. M., de
Graeff, A., Hammerlid, E., Kaasa, S., Sprangers, M. A.
G., & Bjorner, J. B. (2006). Letter to the Editor.
Palliative Medicine, 20(2), 59–61. https://doi.org/10.11
91/0269216306pm1133xx
Hassija, V., Chamola, V., Saxena, V., Jain, D., Goyal, P., &
Sikdar, B. (2019). A Survey on IoT Security:
Application Areas, Security Threats, and Solution
Architectures. In IEEE Access (Vol. 7, pp. 82721–
82743). Institute of Electrical and Electronics
Engineers Inc. https://doi.org/10.1109/ACCESS.20
19.2924045
Khodadadi, M., Shayanfar, H., Maghooli, K., & Mazinan,
A. H. (2019). Fuzzy cognitive map based approach for
determining the risk of ischemic stroke. IET Systems
Biology, 13(6), 297–304. https://doi.org/10.1049/iet-
syb.2018.5128
Koehler, F., Koehler, K., Deckwart, O., Prescher, S.,
Wegscheider, K., Kirwan, B. A., Winkler, S.,
Vettorazzi, E., Bruch, L., Oeff, M., Zugck, C., Doerr,
G., Naegele, H., Störk, S., Butter, C., Sechtem, U.,
Angermann, C., Gola, G., Prondzinsky, R., … Stangl,
K. (2018). Efficacy of telemedical interventional
management in patients with heart failure (TIM-HF2):
a randomised, controlled, parallel-group, unmasked
trial. The Lancet, 392(10152), 1047–1057. https://
doi.org/10.1016/S0140-6736(18)31880-4
Li, J., Zhang, Y., Chen, X., & Xiang, Y. (2018). Secure
attribute-based data sharing for resource-limited users
in cloud computing. Computers and Security, 72, 1–12.
https://doi.org/10.1016/j.cose.2017.08.007
Linkous, L., Zohrabi, N., & Abdelwahed, S. (2019). Health
Monitoring in Smart Homes Utilizing Internet of
Things. Proceedings - 4th IEEE/ACM Conference on
Connected Health: Applications, Systems and
Engineering Technologies, CHASE 2019, 29–34.
https://doi.org/10.1109/CHASE48038.2019.00020
Mielczarek, B. (2016). Review of Modelling Approaches
For Healthcare Simulation. Operations Research and
Decisions, 26(1), 55–72.
Patel, V., Kannampallil, T., & Kaufman Editors, D. (2015).
Health Informatics Human Computer Interaction in
Healthcare. http://www.springer.com/series/1114
Ponikowski, P., Voors, A. A., Anker, S. D., Bueno, H.,
Cleland, J. G. F., Coats, A. J. S., Falk, V., González-
Juanatey, J. R., Harjola, V. P., Jankowska, E. A.,
Jessup, M., Linde, C., Nihoyannopoulos, P., Parissis, J.
T., Pieske, B., Riley, J. P., Rosano, G. M. C., Ruilope,
L. M., Ruschitzka, F., … Davies, C. (2016). 2016 ESC
Guidelines for the diagnosis and treatment of acute and
chronic heart failure. In European Heart Journal (Vol.
37, Issue 27, pp. 2129-2200m). Oxford University
Press. https://doi.org/10.1093/eurheartj/ehw128
Quaglini, S., Sacchi, L., Lanzola, G., & Viani, N. (2015).
Personalization and Patient Involvement in Decision
Support Systems: Current Trends. In
Yearbook of
medical informatics (Vol. 10, Issue 1, pp. 106–118).
https://doi.org/10.15265/IY-2015-015
Reiss, N., Schmidt, T., Boeckelmann, M., Schulte-Eistrup,
S., Hoffmann, J.-D., Feldmann, C., & Schmitto, J. D.
(2018). Telemonitoring of left-ventricular assist device
patients-current status and future challenges. Journal of
Thoracic Disease, 10(15).
Rosen, D., McCall, J. D., & Primack, B. A. (2017).
Telehealth Protocol to Prevent Readmission Among
High-Risk Patients With Congestive Heart Failure. The
American Journal of Medicine, 130(11), 1326–1330.
Salah, K., & Khan, M. (2017). IoT Security: Review,
Blockchain Solutions, and Open Challenges. Future
Generation Computer Systems.
Smith, S. C., Collins, A., Ferrari, R., Holmes, D. R.,
Logstrup, S., McGhie, D. V., Ralston, J., Sacco, R. L.,
Stam, H., Taubert, K., Wood, D. A., & Zoghbi, W. A.
(2012). Our time: A call to save preventable death from
cardiovascular disease (heart disease and stroke).
Journal of the American College of Cardiology, 60(22),
2343–2348. https://doi.org/10.1016/j.jacc.2012.08.962
Sparks, E. R., Venkataraman, S., Kaftan, T., Franklin, M.
J., & Recht, B. (n.d.). KeystoneML: Optimizing
Pipelines for Large-Scale Advanced Analytics.
http://www.keystone-ml.org/
Sung, J. M., Cho, I.-J., Sung, D., Kim, S., Kim, H. C., Chae,
M.-H., Kavousi, M., Rueda-Ochoa, O. L., Ikram, M. A.,
Franco, O. H., & Chang, H.-J. (2019). Development
and verification of prediction models for preventing
cardiovascular diseases. PLOS ONE.
The global cardiovascular disease pandemic, current status
and future projections. (2015).
Tripoliti, E. E., Karanasiou, G. S., Kalatzis, F. G.,
Bechlioulis, A., Goletsis, Y., Naka, K., & Fotiadis, D.
I. (2019). HEARTEN KMS – A knowledge
management system targeting the management of
patients with heart failure. Journal of Biomedical
Informatics, 94. https://doi.org/10.1016/j.jbi.2019.10
3203
Weiss, E. S., Allen, J. G., Kilic, A., Russell, S. D.,
Baumgartner, W. A., Conte, J. V., & Shah, A. S. (2012).
Development of a quantitative donor risk index to
predict short-term mortality in orthotopic heart
transplantation. Journal of Heart and Lung
Transplantation, 31(3), 266–273. https://doi.org/10.10
16/j.healun.2011.10.004