
techniques to securely compute the edit distance on
human genomes and proposed an efficient implemen-
tation reporting some experimental results on both ar-
tificial and public datasets.
Our techniques show improved efficiency over
state of the art, reducing the overall time needed and
providing a 36% speedup over best prior result found
in literature.
Some more optimizations, on both the computa-
tion of the distance and the usage of secure computa-
tion frameworks can be pursued.
ACKNOWLEDGEMENTS
This work was partially supported by project SERICS
(PE00000014) under the MUR National Recovery
and Resilience Plan funded by the European Union
- NextGenerationEU.
REFERENCES
Aziz, M. M. A., Alhadidi, D., and Mohammed, N. (2017).
Secure approximation of edit distance on genomic
data. BMC medical genomics, 10(2):55–67.
Backurs, A. and Indyk, P. (2014). Edit distance cannot be
computed in strongly subquadratic time (unless seth is
false).
Evans, David Kolesnikov, V. and M. Rosulek, M. (2020).
A Pragmatic Introduction to Secure Multi-Party Com-
putation. NOW Publishers.
Evans, W. E. and Relling, M. V. (2004). Moving towards
individualized medicine with pharmacogenomics. Na-
ture, 429(6990):464–468.
Huang, Y., Evans, D., Katz, J., and Malka, L. (2011). Faster
secure {Two-Party} computation using garbled cir-
cuits. In 20th USENIX Security Symposium (USENIX
Security 11).
Hyyr
¨
o, H. (2003). Practical methods for approximate string
matching.
Ishai, Y., Kilian, J., Nissim, K., and Petrank, E. (2003). Ex-
tending oblivious transfers efficiently. In International
Cryptology Conference (CRYPTO).
Kaghazgaran, P. (2017). Privacy-preserving edit distance
on genomic data. arXiv preprint arXiv:1711.06234.
Koboldt, D. C., Fulton, R., McLellan, M., Schmidt, H.,
Kalicki-Veizer, J., McMichael, J., Fulton, L., Dooling,
D., Ding, L., Mardis, E., et al. (2012). Comprehensive
molecular portraits of human breast tumours. Nature,
490(7418):61–70.
Kolesnikov, V. and Kumaresan, R. (2013). Improved ot ex-
tension for transferring short secrets. In Advances in
Cryptology (CRYPTO).
Kolesnikov, V. and Schneider, T. (2008). Improved gar-
bled circuit: Free xor gates and applications. In Pro-
ceedings of the 35th International Colloquium on Au-
tomata, Languages and Programming, Part II, ICALP
’08, page 486–498, Berlin, Heidelberg. Springer-
Verlag.
Levenshtein, V. I. et al. (1966). Binary codes capable of cor-
recting deletions, insertions, and reversals. In Soviet
physics doklady, volume 10, pages 707–710. Soviet
Union.
Malkhi, D., Nisan, N., Pinkas, B., and Sella, Y. (2004). Fair-
play—a secure two-party computation system. In Pro-
ceedings of the 13th Conference on USENIX Security
Symposium - Volume 13, SSYM’04, page 20, USA.
USENIX Association.
Micali, S., Goldreich, O., and Wigderson, A. (1987). How
to play any mental game. In Proceedings of the Nine-
teenth ACM Symp. on Theory of Computing, STOC,
pages 218–229. ACM.
Migliore, A. (2021). Smpc-ed. https://github.com/Andre
aMigliore/smpc-ed.
Seiji, F. (2019). Can we optimize the wagner-fischer algo-
rithm? https://ceptord.net/wagner-fischer/index.html.
Tang, H., Wang, X., Kuo, T.-T., Ohno-Machado, L., Jiang,
X., Harmanci, A. O., and Kim, M. (2016). Idash pri-
vacy & security workshop. http://www.humangenom
eprivacy.org/2016/index.html.
Taylor, J. G., Choi, E.-H., Foster, C. B., and Chanock, S. J.
(2001). Using genetic variation to study human dis-
ease. Trends in molecular medicine, 7(11):507–512.
Ukkonen, E. (1985). Algorithms for approximate string
matching. Information and Control, 64(1):100–118.
Waddell, N., Pajic, M., Patch, A.-M., Chang, D. K., Kas-
sahn, K. S., Bailey, P., Johns, A. L., Miller, D., Nones,
K., Quek, K., et al. (2015). Whole genomes redefine
the mutational landscape of pancreatic cancer. Nature,
518(7540):495–501.
Wagner, R. A. and Fischer, M. J. (1974). The string-
to-string correction problem. Journal of the ACM
(JACM), 21(1):168–173.
Wang, X., Malozemoff, A. J., and Katz, J. (2016). Emp
toolkit. https://github.com/emp-toolkit.
Wang, X. S., Huang, Y., Zhao, Y., Tang, H., Wang, X.,
and Bu, D. (2015). Efficient genome-wide, privacy-
preserving similar patient query based on private edit
distance. In Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Secu-
rity, pages 492–503.
Yao, A. C. (1982). Protocols for secure computations. In
23rd annual symposium on foundations of computer
science (sfcs 1982), pages 160–164. IEEE.
Yao, A. C. (1986). How to generate and exchange secrets. In
27th Annual Symposium on Foundations of Computer
Science (sfcs 1986), pages 162–167. IEEE.
Zahur, S., Rosulek, M., and Evans, D. (2015). Two halves
make a whole - reducing data transfer in garbled cir-
cuits using half gates. In EUROCRYPT, pages 220–
250.
Zhu, R. and Huang, Y. (2017). Efficient privacy-preserving
general edit distance and beyond. Cryptology ePrint
Archive.
Zhu, R. and Huang, Y. (2020). Efficient and precise secure
generalized edit distance and beyond. IEEE Transac-
tions on Dependable and Secure Computing.
Efficient Secure Computation of Edit Distance on Genomic Data
883