
In Proceedings of the 2000 ACM SIGMOD interna-
tional conference on Management of data, pages 93–
104.
Chen, Y., Cheng, L., Hua, Z., and Yi, S. (2023). Lapla-
cian regularized deep low-rank subspace clustering
network. Applied Intelligence, pages 1–15.
DeVries, T. and Taylor, G. W. (2018). Learning confidence
for out-of-distribution detection in neural networks.
arXiv preprint arXiv:1802.04865.
Gong, D., Liu, L., Le, V., Saha, B., Mansour, M. R.,
Venkatesh, S., and Hengel, A. v. d. (2019). Memoriz-
ing normality to detect anomaly: Memory-augmented
deep autoencoder for unsupervised anomaly detec-
tion. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 1705–1714.
Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,
Warde-Farley, D., Ozair, S., Courville, A., and Ben-
gio, Y. (2014). Generative adversarial nets. Advances
in neural information processing systems, 27.
Hasan, M., Choi, J., Neumann, J., Roy-Chowdhury, A. K.,
and Davis, L. S. (2016). Learning temporal regularity
in video sequences. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition,
pages 733–742.
Hinami, R., Mei, T., and Satoh, S. (2017). Joint detection
and recounting of abnormal events by learning deep
generic knowledge. In Proceedings of the IEEE inter-
national conference on computer vision, pages 3619–
3627.
Humbert, P., Le Bars, B., and Minvielle, L. (2022). Robust
kernel density estimation with median-of-means prin-
ciple. In International Conference on Machine Learn-
ing, pages 9444–9465. PMLR.
Ionescu, R. T., Khan, F. S., Georgescu, M.-I., and Shao,
L. (2019). Object-centric auto-encoders and dummy
anomalies for abnormal event detection in video. In
Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 7842–
7851.
Jiang, X., Liu, J., Wang, J., Nie, Q., Wu, K., Liu, Y.,
Wang, C., and Zheng, F. (2022). Softpatch: Unsu-
pervised anomaly detection with noisy data. Advances
in Neural Information Processing Systems, 35:15433–
15445.
Kendall, A. and Gal, Y. (2017). What uncertainties do we
need in bayesian deep learning for computer vision?
Advances in neural information processing systems,
30.
Kingma, D. P. and Welling, M. (2013). Auto-encoding vari-
ational bayes. arXiv preprint arXiv:1312.6114.
LeCun, Y. (1998). The mnist database of handwritten digits.
http://yann. lecun. com/exdb/mnist/.
Lerman, G., McCoy, M. B., Tropp, J. A., and Zhang, T.
(2015). Robust computation of linear models by con-
vex relaxation. Foundations of Computational Math-
ematics, 15:363–410.
Li, W., Huang, X., Lu, J., Feng, J., and Zhou, J.
(2021). Learning probabilistic ordinal embeddings for
uncertainty-aware regression. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pages 13896–13905.
Liang, S., Li, Y., and Srikant, R. (2017). Enhancing the reli-
ability of out-of-distribution image detection in neural
networks. arXiv preprint arXiv:1706.02690.
Liu, G., Lin, Z., and Yu, Y. (2010). Robust subspace seg-
mentation by low-rank representation. In Proceed-
ings of the 27th international conference on machine
learning (ICML-10), pages 663–670.
Liu, J., Lian, Z., Wang, Y., and Xiao, J. (2017). Incremen-
tal kernel null space discriminant analysis for novelty
detection. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 792–
800.
Liu, W., Luo, W., Lian, D., and Gao, S. (2018). Fu-
ture frame prediction for anomaly detection–a new
baseline. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 6536–
6545.
Liu, Z., Zhou, Y., Xu, Y., and Wang, Z. (2023). Simplenet:
A simple network for image anomaly detection and
localization. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition,
pages 20402–20411.
Luo, W., Liu, W., and Gao, S. (2017). A revisit of sparse
coding based anomaly detection in stacked rnn frame-
work. In Proceedings of the IEEE international con-
ference on computer vision, pages 341–349.
Makhzani, A. and Frey, B. J. (2017). Pixelgan autoen-
coders. Advances in Neural Information Processing
Systems, 30.
Moonesinghe, H. and Tan, P.-N. (2008). Outrank: a graph-
based outlier detection framework using random walk.
International Journal on Artificial Intelligence Tools,
17(01):19–36.
Nene, S. A., Nayar, S. K., Murase, H., et al. (1996).
Columbia object image library (coil-20).
Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and
Lerer, A. (2017). Automatic differentiation in pytorch.
Pidhorskyi, S., Almohsen, R., and Doretto, G. (2018). Gen-
erative probabilistic novelty detection with adversarial
autoencoders. Advances in neural information pro-
cessing systems, 31.
Rahmani, M. and Atia, G. K. (2017). Coherence pur-
suit: Fast, simple, and robust principal component
analysis. IEEE Transactions on Signal Processing,
65(23):6260–6275.
Ravanbakhsh, M., Nabi, M., Mousavi, H., Sangineto, E.,
and Sebe, N. (2018). Plug-and-play cnn for crowd
motion analysis: An application in abnormal event de-
tection. In 2018 IEEE Winter Conference on Applica-
tions of Computer Vision (WACV), pages 1689–1698.
IEEE.
Ravanbakhsh, M., Nabi, M., Sangineto, E., Marcenaro, L.,
Regazzoni, C., and Sebe, N. (2017). Abnormal event
detection in videos using generative adversarial nets.
In 2017 IEEE international conference on image pro-
cessing (ICIP), pages 1577–1581. IEEE.
VISAPP 2024 - 19th International Conference on Computer Vision Theory and Applications
264