
posed strategy by enabling the use of level 2 trackers
that support deep learning feature extraction models.
ACKNOWLEDGEMENTS
This work was supported in part by the Coor-
dination for the Improvement of Higher Educa-
tion Personnel (CAPES) (Programa de Cooperac¸
˜
ao
Acad
ˆ
emica em Seguranc¸a P
´
ublica e Ci
ˆ
encias
Forenses # 88881.516265/2020-01), and in part by
the National Council for Scientific and Technological
Development(CNPq) (# 308879/2020-1). We grate-
fully acknowledge the support of NVIDIA Corpora-
tion with the donation of the Quadro RTX 8000 GPU
used for this research.
REFERENCES
Aharon, N., Orfaig, R., and Bobrovsky, B.-Z. (2022). BoT-
SORT: Robust Associations Multi-Pedestrian Track-
ing. arXiv:2206.14651.
Bernardin, K. and Stiefelhagen, R. (2008). Evaluating
Multiple Object Tracking Performance: The CLEAR
MOT Metrics. J. Image Video Process., 2008.
Bewley, A., Ge, Z., Ott, L., Ramos, F., and Upcroft, B.
(2016). Simple online and realtime tracking. In 2016
IEEE Int. Conf. on Image Processing (ICIP), pages
3464–3468.
Brostr
¨
om, M. (2023). BoxMOT: A collection of SOTA real-
time, multi-object trackers for object detectors .
Cao, J., Pang, J., Weng, X., Khirodkar, R., and Kitani,
K. (2023). Observation-Centric SORT: Rethinking
SORT for Robust Multi-Object Tracking. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 9686–9696.
Dendorfer, P., Rezatofighi, H., Milan, A., Shi, J., Cremers,
D., Reid, I., Roth, S., Schindler, K., and Leal-Taix
´
e,
L. (2019). CVPR19 tracking and detection challenge:
How crowded can it get? arXiv:1906.04567 [cs].
Dendorfer, P., Rezatofighi, H., Milan, A., Shi, J., Cremers,
D., Reid, I., Roth, S., Schindler, K., and Leal-Taix
´
e,
L. (2020). MOT20: A benchmark for multi object
tracking in crowded scenes. arXiv:2003.09003[cs].
Du, Y., Wan, J., Zhao, Y., Zhang, B., Tong, Z., and Dong, J.
(2021). GIAOTracker: A comprehensive framework
for MCMOT with global information and optimizing
strategies in VisDrone 2021. In 2021 IEEE/CVF Int.
Conf. on Computer Vision Workshops (ICCVW), pages
2809–2819.
Du, Y., Zhao, Z., Song, Y., Zhao, Y., Su, F., Gong, T.,
and Meng, H. (2023). StrongSORT: Make DeepSORT
Great Again. IEEE Transactions on Multimedia.
Gabinete de Seguranc¸a Institucional (2023). Nota
`
a im-
prensa. Last accessed 25 September 2023.
Ge, Z., Liu, S., Wang, F., Li, Z., and Sun, J. (2021).
YOLOX: Exceeding YOLO Series in 2021.
Jocher, G., Chaurasia, A., and Qiu, J. (2023). YOLO by
Ultralytics.
Jonker, R. and Volgenant, A. (1987). A Shortest Augment-
ing Path Algorithm for Dense and Sparse Linear As-
signment Problems. Computing, 38(4):325–340.
Li, S., Sun, L., and Li, Q. (2023). CLIP-ReID: Exploiting
Vision-Language Model for Image Re-identification
without Concrete Text Labels. Proc. of the AAAI Conf.
on Artificial Intelligence, 37(1):1405–1413.
Luiten, J. and Hoffhues, A. (2020). TrackEval.
https://github.com/JonathonLuiten/TrackEval.
Luiten, J., Osep, A., Dendorfer, P., Torr, P., Geiger, A., Leal-
Taix
´
e, L., and Leibe, B. (2020). HOTA: A Higher
Order Metric for Evaluating Multi-Object Tracking.
Int. Journal of Computer Vision, pages 1–31.
Machaca, L., Sumari H., F. O., Huaman, J., Clua, E., and
Guerin, J. (2022). TrADe Re-ID – Live Person Re-
Identification using Tracking and Anomaly Detection.
In 2022 21st IEEE Int. Conf. on Machine Learning
and Applications (ICMLA), pages 449–454.
Maggiolino, G., Ahmad, A., Cao, J., and Kitani, K. (2023).
Deep OC-SORT: Multi-Pedestrian Tracking by Adap-
tive Re-Identification. arXiv:2302.11813.
Milan, A., Leal-Taix
´
e, L., Reid, I., Roth, S., and Schindler,
K. (2016). MOT16: A benchmark for multi-object
tracking. arXiv:1603.00831 [cs].
Redmon, J., Divvala, S., Girshick, R., and Farhadi, A.
(2016). You only look once: Unified, real-time object
detection. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).
Ristani, E., Solera, F., Zou, R., Cucchiara, R., and Tomasi,
C. (2016). Performance Measures and a Data Set for
Multi-target, Multi-camera Tracking. In Computer Vi-
sion – ECCV 2016 Workshops, pages 17–35, Cham.
Springer International Publishing.
Sun, P., Cao, J., Jiang, Y., Yuan, Z., Bai, S., Kitani, K.,
and Luo, P. (2022). DanceTrack: Multi-Object Track-
ing in Uniform Appearance and Diverse Motion. In
Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages
20993–21002.
Wojke, N., Bewley, A., and Paulus, D. (2017). Simple
online and realtime tracking with a deep association
metric. In 2017 IEEE Int. Conf. on Image Processing
(ICIP), pages 3645–3649.
Yang, M., Han, G., Yan, B., Zhang, W., Qi, J., Lu, H., and
Wang, D. (2023). Hybrid-SORT: Weak Cues Matter
for Online Multi-Object Tracking. arXiv:2308.00783.
Zhang, Y., Sun, P., Jiang, Y., Yu, D., Weng, F., Yuan, Z.,
Luo, P., Liu, W., and Wang, X. (2022). ByteTrack:
Multi-Object Tracking by Associating Every Detec-
tion Box. In Proceedings of the European Conference
on Computer Vision (ECCV).
Zhou, K., Yang, Y., Cavallaro, A., and Xiang, T.
(2019). Omni-Scale Feature Learning for Person Re-
Identification. In 2019 IEEE/CVF Int. Conf. on Com-
puter Vision (ICCV), pages 3701–3711, Los Alamitos,
CA, USA. IEEE Computer Society.
A Multilevel Strategy to Improve People Tracking in a Real-World Scenario
137