
Red Tide Cells (Karenia brevis) in Natural Plankton
Simples. Harmful Algae, 5(6):685–692.
de Zarz
`
a, I., de Curt
`
o, J., and Calafate, C. T. (2022). De-
tection of Glaucoma using Three-stage Training with
EfficientNet. Intelligent Systems with Applications,
16:200140.
Diwan, T., Anirudh, G., and Tembhurne, J. V. (2023). Ob-
ject Detection using YOLO: Challenges, Architectural
Successors, Datasets and Applications. Multimedia
Tools and Applications, 82(6):9243–9275.
Dubelaar, G. B. and Jonker, R. R. (2000). Flow Cytometry
as a Tool for the Study of Phytoplankton. Scientia
Marina, 64(2):135–156.
Figueroa, R., Garc
´
es, E., Massana, R., and Camp, J. (2008).
Description, Host-specificity and Strain Selectivity of
the Dinoflagellate Parasite Parvilucifera sinerae sp.
Nov. (Perkinsozoa). Protist, 159(4):563–578.
Fuchs, R., Thyssen, M., Creach, V., Dugenne, M., Izard,
L., Latimier, M., Louchart, A., Marrec, P., Rijkeboer,
M., Gr
´
egori, G., et al. (2022). Automatic Recognition
of Flow Cytometric Phytoplankton Functional Groups
using Convolutional Neural Networks. Limnology and
Oceanography: Methods, 20(7):387–399.
Google (2023). Google Colaboratory: a Hosted Jupyter
Notebook Service. https://colab.google/.
Henrichs, D., Angl
`
es, S., Gaonkar, C., and Campbell, L.
(2021). Application of a Convolutional Neural Net-
work to Improve Automated Early Warning of Harm-
ful Algal Blooms. Environmental Science and Pollu-
tion Research, 28:28544–28555.
Huang, M.-L. and Liao, Y.-C. (2023). Stacking Ensem-
ble and ECA-EfficientNetV2 Convolutional Neural
Networks on Classification of Multiple Chest Dis-
eases Including COVID-19. Academic Radiology,
30(9):1915–1935.
Hussain, M., Bird, J. J., and Faria, D. R. (2019). A Study
on CNN Transfer Learning for Image Classification.
In Advances in Computational Intelligence Systems,
pages 191–202.
Kerr, T., Clark, J. R., Fileman, E. S., Widdicombe, C. E.,
and Pugeault, N. (2020). Collaborative Deep Learn-
ing Models to Handle Class Imbalance in FlowCam
Plankton Imagery. IEEE Access, 8:170013–170032.
Lee, J. and Hwang, K.-i. (2022). YOLO with Adap-
tive Frame Control for Real-time Object Detection
Applications. Multimedia Tools and Applications,
81(25):36375–36396.
Menden-Deuer, S., Morison, F., Montalbano, A. L., Franz
`
e,
G., Strock, J., Rubin, E., McNair, H., Mouw, C.,
and Marrec, P. (2020). Multi-Instrument Assess-
ment of Phytoplankton Abundance and Cell Sizes in
Mono-Specific Laboratory Cultures and Whole Plank-
ton Community Composition in the North Atlantic.
Frontiers in Marine Sciences, 7(254).
Padilla, R., Netto, S. L., and da Silva, E. A. B. (2020). A
Survey on Performance Metrics for Object-Detection
Algorithms. In Proceedings of the International Con-
ference on Systems, Signals and Image Processing
(IWSSIP), pages 237–242.
Rodellas, V., Garcia-Orellana, J., Masqu
´
e, P., and Wein-
stein, Y. (2015). Submarine Groundwater Discharge
as a Major Source of Nutrients to the Mediterranean
Sea. The Proceedings of the National Academy of Sci-
encese PNAS, 112(13):3926–3930.
Sosa-Trejo, D., Bandera, A., Gonz
´
alez, M., and Hern
´
andez-
Le
´
on, S. (2023). Vision-based Techniques for Auto-
matic Marine Plankton Classification. Artificial Intel-
ligence Reviews, 56:12853–12884.
Tan, M. and Le, Q. (2019). EfficientNet: Rethinking Model
Scaling for Convolutional Neural Networks. In Pro-
ceedings of the 36th International Conference on Ma-
chine Learning, pages 6105–6114.
Tensor-Flow-Org (2023). Tensor Flow Hub, a Repos-
itory of Trained Machine Learning Models.
https://www.tensorflow.org/hub.
Tovar-S
´
anchez, A., Basterretxea, G., Rodellas, V., S
´
anchez-
Quiles, D., Garc
´
ıa-Orellana, J., Masqu
´
e, P., Jordi, A.,
L
´
opez, J. M., and Garcia-Solsona, E. (2014). Contri-
bution of Groundwater Discharge to the Coastal Dis-
solved Nutrients and Trace Metal Concentrations in
Majorca Island: Karstic vs. Detrital Systems. Environ
Sci. Technol, 48:11819–11827.
Ullah, I., Carri
´
on-Ojeda, D., Escalera, S., Guyon, I. M.,
Huisman, M., Mohr, F., van Rijn, J. N., Sun, H., Van-
schoren, J., and Vu, P. A. (2022). Meta-Album: Multi-
domain Meta-Dataset for Few-Shot Image Classifica-
tion. In Neural Information Processing Systems.
Wood, L. and Chollet, F. (2022). Efficient Graph-Friendly
COCO Metric Computation for Train-Time Model
Evaluation. https://arxiv.org/abs/2207.12120.
Yamazaki, H. (2022). Plankton Image Dataset from a Ca-
bled Observatory System (JEDI System/OCEANS)
Deployed at Coastal Area of Oshima Island, Tokyo,
Japan. https://doi.org/10.48518/00014.
Yokogawa (2023). FlowCam: Flow Imaging Microscopy.
https://www.yokogawa.com/solutions/products-
and-services/life-science/flowcam-flow-imaging-
microscopy/.
Zhang, J., Li, C., Yin, Y., Zhang, J., and Grzegorzek, M.
(2023). Applications of Artificial Neural Networks
in Microorganism Image Analisis: a Comprehensive
Review from Conventional Multilayer Perceptron to
Popular Convolutional Neural Network and Potential
Visual Transformer. Artificial Intelligence Review,
56:1013–1070.
Zhang, Y., Lu, Y., Wang, H., Chen, P., and Liang, R.
(2021). Automatic Classification of Marine Plankton
with Digital Holography Using Convolutional Neural
Network. Optics and Laser Technology, 139:106979.
Zingone, A., Escalera, L., Aligizaki, K., Fern
´
andez-Tejedor,
M., Ismael, A., Montresor, M., Mozeti
ˇ
c, P., Tas¸, S.,
and Totti, C. (2021). Toxic Marine Microalgae and
Noxious Blooms in the Mediterranean Sea: A Con-
tribution to the Global HAB Status Report. Harmful
Algae, 102:101843.
Microplankton Discrimination in FlowCAM Images Using Deep Learning
613