
reach saturation of performance and improve gener-
alization to new setups, as well as using additional
information such as tracking and morphology estima-
tion to leverage the existing data further.
ACKNOWLEDGEMENTS
This research was supported by USDA/NIFA, award
2021-67014-34999, by the PR-LSAMP Bridge to the
Doctorate Program, NSF award 2306079 and by IQ-
BIO REU, NSF award 1852259. This work used
the UPR High-Performance Computing facility, sup-
ported by NIH/NIGMS, award 5P20GM103475.
REFERENCES
Bergamini, L., Porrello, A., Dondona, A. C., Del Negro, E.,
Mattioli, M., D’alterio, N., and Calderara, S. (2018).
Multi-views embedding for cattle re-identification. In
2018 14th international conference on signal-image
technology & internet-based systems (SITIS), pages
184–191. IEEE.
Boenisch, F., Rosemann, B., Wild, B., Dormagen, D.,
Wario, F., and Landgraf, T. (2018). Tracking all mem-
bers of a honey bee colony over their lifetime us-
ing learned models of correspondence. Frontiers in
Robotics and AI, 5:35.
Borlinghaus, P., Tausch, F., and Rettenberger, L. (2023). A
purely visual re-id approach for bumblebees (bombus
terrestris). Smart Agricultural Technology, 3:100135.
Bozek, K., Hebert, L., Portugal, Y., Mikheyev, A. S., and
Stephens, G. J. (2021). Markerless tracking of an
entire honey bee colony. Nature communications,
12(1):1733.
Chan, J., Carri
´
on, H., M
´
egret, R., Agosto-Rivera, J. L., and
Giray, T. (2022). Honeybee re-identification in video:
New datasets and impact of self-supervision. In Pro-
ceedings of the 17th International Joint Conference
on Computer Vision, Imaging and Computer Graphics
Theory and Applications (VISIGRAPP 2022), volume
5: VISAPP, pages 517–525.
Crall, J. D., Gravish, N., Mountcastle, A. M., and Combes,
S. A. (2015). Beetag: a low-cost, image-based track-
ing system for the study of animal behavior and loco-
motion. PloS one, 10(9):e0136487.
Giray, T., Abramson, C. I., Chicas-Mosier, A., Brewster,
T., Hayes, C., Rivera-Vega, K., Williams, M., and
Wells, H. (2015). Effect of octopamine manipulation
on honeybee decision making: reward and cost dif-
ferences associated with foraging. Animal Behaviour,
100:144–150.
Khosla, P., Teterwak, P., Wang, C., Sarna, A., Tian, Y.,
Isola, P., Maschinot, A., Liu, C., and Krishnan, D.
(2020). Supervised contrastive learning. Advances
in neural information processing systems, 33:18661–
18673.
Li, S., Li, J., Tang, H., Qian, R., and Lin, W. (2019). ATRW:
a benchmark for amur tiger re-identification in the
wild. arXiv preprint arXiv:1906.05586.
Meyers, L., Cordero, J. R., Bravo, C. C., Noel, F., Agosto-
Rivera, J., Giray, T., and M
´
egret, R. (2023). To-
wards Automatic Honey Bee Flower-Patch Assays
with Paint Marking Re-Identification. Workshop
CV4Animals, in conjunction CVPR 2023, Vancouver,
Canada. arXiv:2311.07407.
Moore, B. E. and Corso, J. J. (2020). Fiftyone. GitHub
page: https://github.com/voxel51/fiftyone.
Papafitsoros, K., Adam, L.,
ˇ
Cerm
´
ak, V., and Picek, L.
(2022). Seaturtleid: A novel long-span dataset high-
lighting the importance of timestamps in wildlife re-
identification. arXiv preprint arXiv:2211.10307.
Pereira, T. D., Tabris, N., Matsliah, A., Turner, D. M., Li, J.,
Ravindranath, S., Papadoyannis, E. S., Normand, E.,
Deutsch, D. S., Wang, Z. Y., et al. (2022). Sleap: A
deep learning system for multi-animal pose tracking.
Nature methods, 19(4):486–495.
Ravoor, P. and Tsb, S. (2020). Deep Learning Methods for
Multi-Species Animal Re-identification and Tracking
– a Survey. Computer Science Review, 38:100289.
Rodriguez, I. F., Chan, J., Alvarez Rios, M., Branson,
K., Agosto-Rivera, J. L., Giray, T., and M
´
egret, R.
(2022). Automated video monitoring of unmarked and
marked honey bees at the hive entrance. Frontiers in
Computer Science, 3:142.
Romero-Ferrero, F., Bergomi, M. G., Hinz, R. C., Heras,
F. J. H., and Polavieja, G. G. d. (2019). idtracker.ai:
tracking all individuals in small or large collectives of
unmarked animals. Nature Methods, 16(2):179.
Sasaki, T., Granovskiy, B., Mann, R. P., Sumpter, D. J. T.,
and Pratt, S. C. (2013). Ant colonies outperform indi-
viduals when a sensory discrimination task is difficult
but not when it is easy. Proceedings of the National
Academy of Sciences, 110(34):13769–13773.
Schroff, F., Kalenichenko, D., and Philbin, J. (2015).
FaceNet: A Unified Embedding for Face Recognition
and Clustering. arXiv:1503.03832 [cs], pages 815–
823. arXiv: 1503.03832.
Smith, M. L., Davidson, J. D., Wild, B., Dormagen, D. M.,
Landgraf, T., and Couzin, I. D. (2022). Behavioral
variation across the days and lives of honey bees.
Iscience, 25(9):104842.
Stock, A., Gregr, E. J., and Chan, K. M. A. (2023).
Data leakage jeopardizes ecological applications of
machine learning. Nature Ecology & Evolution,
7(11):1743–1745. Number: 11 Publisher: Nature
Publishing Group.
Streit, S., Bock, F., Pirk, C. W., and Tautz, J. (2003). Au-
tomatic life-long monitoring of individual insect be-
haviour now possible. Zoology, 106(3):169–171.
Wang, H., Du, H., Zhao, Y., and Yan, J. (2020). A Com-
prehensive Overview of Person Re-Identification Ap-
proaches. IEEE Access, PP:1–1.
Identification of Honeybees with Paint Codes Using Convolutional Neural Networks
779