
Ben Othman, L. and Ben Yahia, S. (2018). A multiple cri-
teria evaluation technique for missing values imputa-
tion. In 12th Intl. Conf. on Research Challenges in In-
formation Science, RCIS 2018, Nantes, France, May
29-31, 2018, pages 1–12. IEEE.
Ben Othman, L., Rioult, F., Ben Yahia, S., and Cr
´
emilleux,
B. (2009). Missing values: Proposition of a typology
and characterization with an association rule-based
model. volume 5691, pages 441–452.
Costa, A. F., Santos, M. S., Soares, J. P., and Abreu, P. H.
(2018). Missing data imputation via denoising autoen-
coders: The untold story. In Duivesteijn, W., Siebes,
A., and Ukkonen, A., editors, Advances in Intelligent
Data Analysis XVII, pages 87–98, Cham. Springer
Intl. Publishing.
Dempster, A., Laird, N., and Rubin, D. (1977). Max-
imum likelihood from incomplete data via the EM
algorithm. Journal of the Royal Statistical Society,
39(1):1–38.
Gabr, M. I., Helmy, Y. M., and Elzanfaly, D. S. (2023). Ef-
fect of missing data types and imputation methods on
supervised classifiers: An evaluation study. Big Data
and Cognitive Computing, 7(1).
Keerin, P. and Boongoen, T. (2022). Improved knn imputa-
tion for missing values in gene expression data. Com-
puters, Materials and Continua, 70:4009–4025.
Kingma, D. P. and Ba, J. (2014). Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.
Le Bras, Y., Meyer, P., Lenca, P., and Lallich, S. (2010).
A robustness measure of association rules. In Proc.
of ECML PKDD’10: Part II, ECML PKDD’10, pages
227–242, Berlin, Heidelberg. Springer-Verlag.
Lee, W.-H., Ozger, M., Challita, U., and Sung, K. W.
(2021). Noise learning-based denoising autoencoder.
IEEE Communications Letters, 25(9):2983–2987.
Liguori, A., Markovic, R., Dam, T. T. H., Frisch, J., Treeck,
C., and Causone, F. (2021). Indoor environment data
time-series reconstruction using autoencoder neural
networks. Building and Environment, 191:107623.
Little, R. and Rubin, D. (2002). Statistical Analysis with
Missing Data, Second Edition. John Wiley, New York.
Maggipinto, M., Masiero, C., Beghi, A., and Susto, G. A.
(2018). A convolutional autoencoder approach for
feature extraction in virtual metrology. Procedia
Manufacturing, 17:126–133. 28th Intl. Conf. on
Flexible Automation and Intelligent Manufacturing
(FAIM2018), June 11-14, 2018, Columbus, OH, US-
AGlobal Integration of Intelligent Manufacturing and
Smart Industry for Good of Humanity.
Martin. Abadi, A. A. and et al. (2015). TensorFlow: Large-
scale machine learning on heterogeneous systems.
Software available from tensorflow.org.
Michelucci, U. (2022). An introduction to autoencoders.
CoRR, abs/2201.03898.
Niloofar, P. and Ganjali, M. (2014). A new multivariate im-
putation method based on bayesian networks. Journal
of applied statistics, 41(3):501–518.
Niloofar, P., Ganjali, M., and Rohani, M. F. (2013). Im-
proving the performance of bayesian networks in non-
ignorable missing data imputation. Kuwait Journal of
Science, 40(2).
Pereira, R. C., Santos, J. C., Amorim, J., Rodrigues, P., and
Henriques Abreu, P. (2020a). Missing image data im-
putation using variational autoencoders with weighted
loss.
Pereira, R. C., Santos, M. S., Rodrigues, P. P., and Abreu,
P. H. (2020b). Reviewing autoencoders for missing
data imputation: Technical trends, applications and
outcomes. Journal of Artificial Intelligence Research,
69:1255–1285.
Phillips, T. and Abdulla, W. (2019). Class embodiment au-
toencoder (ceae) for classifying the botanical origins
of honey. pages 1–5.
Phillips, T. and Abdulla, W. (2022). A new honey adulter-
ation detection approach using hyperspectral imaging
and machine learning. European Food Research and
Technology, 249.
Phung, S., Kumar, A., and Kim, J. (2019). A deep learning
technique for imputing missing healthcare data. vol-
ume 2019, pages 6513–6516.
Rand, W. M. (1971). Objective criteria for the evaluation of
clustering methods. Journal of the American Statisti-
cal association, 66(336):846–850.
S. Li, M. L. and et al. (2022). Handling missing values in
healthcare data: A systematic review of deep learning-
based imputation techniques.
Schouten, R., Lugtig, P., and Vink, G. (2018). Generating
missing values for simulation purposes: a multivariate
amputation procedure. Journal of Statistical Compu-
tation and Simulation, 88:1–22.
Sriram, S., Dwivedi, A., Chitra, P., Sankar, V., Abirami, S.,
Durai, S., Pandey, D., and Khare, M. (2022). Deep-
comp: A hybrid framework for data compression us-
ing attention coupled autoencoder. Arabian Journal
for Science and Engineering, 47.
Torabi, H., Mirtaheri, S., and Greco, S. (2023). Practical
autoencoder based anomaly detection by using vector
reconstruction error. Cybersecurity, 6.
Twala, B. (2009). An empirical comparison of techniques
for handling incomplete data using decision trees. Ap-
plied Artificial Intelligence, 23:373–405.
Venkataraman, P. (2022). Image denoising using convolu-
tional autoencoder.
Wang, Z., Akande, O., Poulos, J., and Li, F. (2021). Are
deep learning models superior for missing data impu-
tation in large surveys? evidence from an empirical
comparison. CoRR, abs/2103.09316.
Zhou, X.-H., Zhou, C., Lui, D., and Ding, X. (2014). Ap-
plied missing data analysis in the health sciences.
John Wiley & Sons.
ICAART 2024 - 16th International Conference on Agents and Artificial Intelligence
1244