Esperança Pina, J. E. (2017). Locomotion Anatomy (4th
ed.). Lisbon: Lidel.
Ewins, D., & Collins, T. (2014). Clinical Gait Analysis. In
A. Taktak, P. Ganney, D. Long, & P. White (Eds.), A
Handbook for Clinical and Biomedical Engineers (pp.
389-401). Academic Press.
Freivalds, A. (2011). Biomechanics of the upper limbs: me-
chanics, modeling and musculoskeletal injuries. CRC
press.
Gil-Agudo, A., de Los Reyes-Guzmán, A., Dimbwadyo-
Terrer, I., Peñasco-Martín, B., Bernal-Sahún, A., López-
Monteagudo, P., Del Ama-Espinosa, A., & Pons, J. L.
(2013). A novel motion tracking system for evaluation
of functional rehabilitation of the upper limbs. Neural
regeneration research, 8(19), 1773–1782.
https://doi.org/10.3969/j.issn.1673-5374.2013.19.005
Gulde, P., & Hermsdörfer, J. (2017). Both hands at work:
the effect of aging on upper-limb kinematics in a multi-
step activity of daily living. Experimental brain research,
235(5), 1337–1348. https://doi.org/10.1007 /s00221-
017-4897-4
Horak, F., King, L., & Mancini, M. (2015). Role of body-
worn movement monitor technology for balance and
gait rehabilitation. Physical therapy, 95(3), 461–470.
https://doi.org/10.2522/ptj.20140253
Jalloul, N., Poree, F., Viardot, G., L Hostis, P., Carrault, G.,
Jalloul, N., Poree, F., Viardot, G., L' Hostis, P., &
Carrault, G. (2018). Activity Recognition Using
Complex Network Analysis. IEEE journal of biomedical
and health informatics, 22(4), 989–1000.
https://doi.org/10.1109/JBHI.2017.2762404
Klein, A., Sacrey, L. A., Dunnett, S. B., Whishaw, I. Q., &
Nikkhah, G. (2011). Proximal movements compensate
for distal forelimb movement impairments in a reach-to-
eat task in Huntington's disease: new insights into motor
impairments in a real-world skill. Neurobiology of
disease, 41(2), 560–569.
https://doi.org/10.1016/j.nbd.2010.11.002
Levin, M. F., Kleim, J. A., & Wolf, S. L. (2009). What do
motor "recovery" and "compensation" mean in patients
following stroke?. Neurorehabilitation and neural repair,
23(4), 313–319.
https://doi.org/10.1177/1545968308328727
Molina Rueda, F., Rivas Montero, F. M., Pérez de Heredia
Torres, M., Alguacil Diego, I. M., Molero Sánchez, A.,
& Miangolarra Page, J. C. (2012). Análisis del
movimiento de la extremidad superior hemiparética en
pacientes con accidente cerebrovascular: estudio piloto.
Neurologia (Barcelona, Spain), 27(6), 343–347.
https://doi.org/10.1016/j.nrl.2011.12.012
Musall, Simon (2023). stdshade (https://www.mathworks.
com/matlabcentral/fileexchange/29534stdshade),
MATLAB Central File Exchange.
Nakatake, J., Arakawa, H., Tajima, T., Miyazaki, S., &
Chosa, E. (2023). Age- and sex-related differences in
upper-body joint and endpoint kinematics during a
drinking task in healthy adults. PeerJ, 11, e16571.
https://doi.org/10.7717/peerj.16571
Nakatake, J., Totoribe, K., Arakawa, H., & Chosa, E. (2021).
Exploring whole-body kinematics when eating real
foods with the dominant hand in healthy adults. PloS
one, 16(10), e0259184. https://doi.org/10.1371/
journal.pone.0259184
Nakayama, H., Jørgensen, H. S., Raaschou, H. O., & Olsen,
T. S. (1994). Compensation in recovery of upper
extremity function after stroke: the Copenhagen Stroke
Study. Archives of physical medicine and rehabilitation,
75(8), 852–857. https://doi.org/10.101 6/0003-
9993(94)90108-2
Özdemir, A.T.; Barshan, B. Detecting Falls with Wearable
Sensors Using Machine Learning Techniques. Sensors
2014, 14, 10691-10708. https://doi.org/10.3390/s14061
0691
Plux Wireless Biosignals (2019). Accelerometer ACC User
Manual (Plux). http:// www.plux.info
Plux Wireless Biosignals (2017). Electromyography EMG
User Manual (Plux). http:// www.plux.info
Ricci, F. P., Santiago, P. R., Zampar, A. C., Pinola, L. N., &
Fonseca, M.deC. (2015). Upper extremity coordination
strategies depending on task demand during a basic daily
activity. Gait & posture, 42(4), 472-
478.https://doi.org/10.1016/j.gaitpost.2015.07.061
Santos, G. L., Russo, T. L., Nieuwenhuys, A., Monari, D.,
& Desloovere, K. (2018). Kinematic Analysis of a
Drinking Task in Chronic Hemiparetic Patients Using
Features Analysis and Statistical Parametric Mapping.
Archives of physical medicine and rehabilitation, 99(3),
501–511.e4. https://doi.org/10.1016/j.apmr.2017.08.4
79
Santos, P., Quaresma, C., Garcia, I., Quintão, C. (2022a,
July). Neuromotor Evaluation of the Upper Limb
During Activities of Daily Living: A Pilot Study. In:
Camarinha-Matos, L.M. (eds) Technological Innovation
for Digitalization and Virtualization. DoCEIS 2022.
IFIP Advances in Information and Communication
Technology, vol 649. Springer, Cham.
https://doi.org/10.1007/978-3-031-07520-9_11
Santos, P., Garcia, I., Quaresma, C., & Quintão, C. (2022b,
October). Analysis of Upper Limb Contraction Pattern
Using Electromyographic Signal During Activities of
Daily Living: a Pilot Study. In HEALTHINFO 2022
Editors (Eds.), The Seventh International Conference on
Informatics and Assistive Technologies for Health-
Care, Medical Support and Wellbeing.
https://www.thinkmind.org/download_full.php?instanc
e=HEALTHINFO+2022
Stansfield, B., Rooney, S., Brown, L., Kay, M., Spoettl, L.,
& Shanmugam, S. (2018). Distal upper limb kinematics
during functional everyday tasks. Gait & posture, 61,
135-140.https://doi.org/10.1016/j.gaitpost.2018.01.004
Stegeman, D., & Hermens, H. (2007). Standards for surface
electromyography: The European project Surface EMG
for non-invasive assessment of muscles (SENIAM).
Roessingh Research and Development, 10, 8-12.
https://www.researchgate.net/publication/228486725
Valevicius, A. M., Boser, Q. A., Lavoie, E. B., Chapman, C.
S., Pilarski, P. M., Hebert, J. S., & Vette, A. H. (2019).
Characterization of normative angular joint kinematics
during two functional upper limb tasks. Gait & posture,
69, 176–186. https://doi.org/10.1016/
j.gaitpost.2019.01.037