
munication and Networking Technologies (ICCCNT),
pages 1–7.
Kumar, R., Jain, A., Tripathi, A., and Tyagi, S. (2021).
Covid-19 outbreak: An epidemic analysis using time
series prediction model. 2021 11th International Con-
ference on Cloud Computing, Data Science & Engi-
neering (Confluence), pages 1090–1094.
Kumar, Y., Koul, A., Kaur, S., and Hu, Y.-C. (2022). Ma-
chine learning and deep learning based time series
prediction and forecasting of ten nations’ covid-19
pandemic. SN Computer Science, page 91.
Li, W., Zuo, M., Zhao, H., Xu, Q., and Chen, D. (2022).
Prediction of coronary heart disease based on com-
bined reinforcement multitask progressive time-series
networks. Methods, pages 96–106.
Liu, B., Shi, S., Wu, Y., Thomas, D., Symul, L., Pierson, E.,
and Leskovec, J. (2019). Predicting pregnancy using
large-scale data from a women’s health tracking mo-
bile application. In The World Wide Web Conference,
pages 2999–3005.
Liu, H., Lou, S. S., Warner, B. C., Harford, D. R., Kan-
nampallil, T., and Lu, C. (2022). Hipal: A deep
framework for physician burnout prediction using ac-
tivity logs in electronic health records. arXiv preprint
arXiv:2205.11680.
Liu, V. X., Escobar, G. J., Greene, J. D., Soule, J., Whippy,
A., Angus, D. C., and Iwashyna, T. J. (2014). Hospi-
tal deaths in patients with sepsis from 2 independent
cohorts. JAMA, pages 90–2.
Ma, F., You, Q., Xiao, H., Chitta, R., Zhou, J., and Gao,
J. (2018). Kame: Knowledge-based attention model
for diagnosis prediction in healthcare. Proceedings of
the 27th ACM International Conference on Informa-
tion and Knowledge Management.
Makarovskikh, T. A. and Abotaleb, M. S. A. (2022). Hyper-
parameter tuning for long short-term memory (lstm)
algorithm to forecast a disease spreading. 2022 VIII
International Conference on Information Technology
and Nanotechnology (ITNT), pages 1–6.
Masum, A. K. M., Khushbu, S. A., Keya, M., Abujar, S.,
and Hossain, S. A. (2020). Covid-19 in bangladesh:
a deeper outlook into the forecast with prediction of
upcoming per day cases using time series. Procedia
Computer Science, pages 291–300.
Moshawrab, M., Adda, M., Bouzouane, A., Ibrahim, H.,
and Raad, A. (2022). Cardiovascular events predic-
tion using artificial intelligence models and heart rate
variability. Procedia Computer Science, pages 231–
238.
Mukherji, D., Mukherji, M., and Mukherji, N. (2022). Early
detection of alzheimer’s disease using neuropsycho-
logical tests: a predict–diagnose approach using neu-
ral networks. Brain Informatics, pages 1–26.
Olivato, M., Rossetti, N., Gerevini, A. E., Chiari, M.,
Putelli, L., and Serina, I. (2022). Machine learn-
ing models for predicting short-long length of stay of
covid-19 patients. Procedia Computer Science, pages
1232–1241.
O’Shea, K. and Nash, R. (2015). An introduction to convo-
lutional neural networks. ArXiv.
Peixoto, D., Barbosa, A., Peixoto, H., Lopes, J., Guimar
˜
aes,
T., and Santos, M. (2022). Predictive analytics for
hospital inpatient flow determination. Procedia Com-
puter Science.
Perwej, Y., Parwej, F., and Akhtar, N. (2018). An intelligent
cardiac ailment prediction using efficient rock algo-
rithm and k-means & c4. 5 algorithm. European Jour-
nal of Engineering and Technology Research, pages
126–134.
Prasad, V. K., Bhattacharya, P., Bhavsar, M. D., Verma, A.,
Tanwar, S., Sharma, G., Bokoro, P. N., and Sharma, R.
(2022). Abv-covid: An ensemble forecasting model to
predict availability of beds and ventilators for covid-
19 like pandemics. IEEE Access, pages 74131–74151.
Rasheed, K., Qayyum, A., Qadir, J., Sivathamboo, S.,
Kwan, P., Kuhlmann, L., O’Brien, T. J., and Razi,
A. (2020). Machine learning for predicting epileptic
seizures using eeg signals: A review. IEEE Reviews
in Biomedical Engineering, pages 139–155.
Saad, N. G. E.-D., Ghoniemy, S. S., Faheem, H. M.,
and Seada, N. A. (2022). An evaluation of time
series-based modeling and forecasting of infectious
diseases progression using statistical versus compart-
mental methods. 2022 5th International Conference
on Computing and Informatics (ICCI), pages 263–
273.
Sanabria, E., Lam, H., de Larrea, E. L., Sethuraman, J., Mo-
hammadi, S., Olivier, A., Smyth, A. W., Dolan, E. M.,
Johnson, N. E., Kepler, T. R., et al. (2021). Short-
term adaptive emergency call volume prediction. In
2021 Winter Simulation Conference (WSC), pages 1–
12. IEEE.
Song, W., Cai, W., Li, J., Jiang, F., and He, S. (2019). Pre-
dicting blood glucose levels with emd and lstm based
cgm data. In 2019 6th International Conference on
Systems and Informatics (ICSAI), pages 1443–1448.
IEEE.
Thissen, U., Van Brakel, R., De Weijer, A., Melssen, W.,
and Buydens, L. (2003). Using support vector ma-
chines for time series prediction. Chemometrics and
intelligent laboratory systems, pages 35–49.
Wang, Z.-H., Horng, G.-J., Hsu, T.-H., Aripriharta, A., and
Jong, G.-J. (2020). Heart sound signal recovery based
on time series signal prediction using a recurrent neu-
ral network in the long short-term memory model. The
Journal of Supercomputing, pages 8373–8390.
Xu, X., Zhang, Y., Zhang, R., and Xu, T. (2023). Patient-
specific method for predicting epileptic seizures based
on drsn-gru. Biomedical Signal Processing and Con-
trol, page 104449.
Yan, Y., Zhao, K., Cao, J., and Ma, H. (2021). Prediction
research of cervical cancer clinical events based on re-
current neural network. Procedia Computer Science,
pages 221–229.
Yu, J., Park, S., Ho, C. M. B., Kwon, S.-H., Cho, K.-H., and
Lee, Y. S. (2022). Ai-based stroke prediction system
using body motion biosignals during walking. The
Journal of Supercomputing, pages 1–23.
Time Series Prediction Models in Healthcare: Systematic Literature Review
1293