
and-patient-safety-documents/abbreviations.pdf. Re-
trieved on November 19, 2023.
Huggingface (2023a). Biogpt. https://huggingface.co/
microsoft/biogpt. Retrieved on November 7, 2023.
Huggingface (2023b). Metric: perplexity. https:
//huggingface.co/spaces/evaluate-metric/perplexity.
Retrieved on November 7, 2023.
Jeblick, K., Schachtner, B., Dexl, J., Mittermeier, A.,
St
¨
uber, A. T., Topalis, J., Weber, T., Wesp, P., Sabel,
B. O., Ricke, J., and et al. (2023). Chatgpt makes
medicine easy to swallow: An exploratory case study
on simplified radiology reports. European Radiology.
Jiang, C., Maddela, M., Lan, W., Zhong, Y., and Xu, W.
(2020). Neural CRF model for sentence alignment in
text simplification. In Jurafsky, D., Chai, J., Schluter,
N., and Tetreault, J., editors, Proceedings of the 58th
Annual Meeting of the Association for Computational
Linguistics, pages 7943–7960, Online. Association
for Computational Linguistics.
JMIR Publications, Medical Xpress (2023). Chat-
gpt generates ’convincing’ fake scientific article.
https://medicalxpress.com/news/2023-07-chatgpt-
generates-convincing-fake-scientific.html. Retrieved
on November 7, 2023.
Johnson, W. (1944). Studies in language behavior: A
program of research. Psychological Monographs,
56(2):1–15.
Kandula, S., Curtis, D., and Zeng-Treitler, Q. (2010). A se-
mantic and syntactic text simplification tool for health
content. AMIA ... Annual Symposium proceedings /
AMIA Symposium. AMIA Symposium, 2010:366–70.
Ken Foxe, Irish examiner (2023). Ucc staff told it would
be almost impossible to detect students cheating
with chatgpt. https://www.irishexaminer.com/news/
munster/arid-41135368.html. Retrieved on November
7, 2023.
Levenshtein, V. (1966). Binary codes capable of correct-
ing deletions, insertions and reversals. Soviet Physics
Doklady, 10:707–710.
Li, Y., Bubeck, S., Eldan, R., Giorno, A. D., Gunasekar, S.,
and Lee, Y. T. (2023). Textbooks are all you need ii:
phi-1.5 technical report.
Liao, W., Liu, Z., Dai, H., Xu, S., Wu, Z., Zhang, Y., Huang,
X., Zhu, D., Cai, H., Liu, T., and Li, X. (2023). Differ-
entiate chatgpt-generated and human-written medical
texts.
Luo, J., Lin, J., Lin, C., Xiao, C., Gui, X., and Ma, F.
(2022). Benchmarking automated clinical language
simplification: Dataset, algorithm, and evaluation. In
Calzolari, N., Huang, C.-R., Kim, H., Pustejovsky, J.,
Wanner, L., Choi, K.-S., Ryu, P.-M., Chen, H.-H.,
Donatelli, L., Ji, H., Kurohashi, S., Paggio, P., Xue,
N., Kim, S., Hahm, Y., He, Z., Lee, T. K., Santus,
E., Bond, F., and Na, S.-H., editors, Proceedings of
the 29th International Conference on Computational
Linguistics, pages 3550–3562, Gyeongju, Republic
of Korea. International Committee on Computational
Linguistics.
Luo, Y.-F., Henry, S., Wang, Y., Shen, F., Uzuner, O.,
and Rumshisky, A. (2020). The 2019 national nat-
ural language processing (nlp) clinical challenges
(n2c2)/open health nlp (ohnlp) shared task on clini-
cal concept normalization for clinical records. Jour-
nal of the American Medical Informatics Association,
27(10).
Manakul, P., Liusie, A., and Gales, M. J. F. (2023). Self-
checkgpt: Zero-resource black-box hallucination de-
tection for generative large language models.
Manzini, E., Garrido-Aguirre, J., Fonollosa, J., and Perera-
Lluna, A. (2022). Mapping layperson medical termi-
nology into the human phenotype ontology using neu-
ral machine translation models. Expert Systems with
Applications, 204:117446.
Martin, L., de la Clergerie,
´
E., Sagot, B., and Bordes,
A. (2020). Controllable sentence simplification. In
Proceedings of the Twelfth Language Resources and
Evaluation Conference, pages 4689–4698, Marseille,
France. European Language Resources Association.
McCarthy, P. (2005). An assessment of the range and use-
fulness of lexical diversity measures and the potential
of the measure of textual, lexical diversity (MTLD).
PhD thesis, University of Memphis.
Meghan Holohan, Today (2023). A boy saw 17 doctors
over 3 years for chronic pain. https://www.today.com/
health/mom-chatgpt-diagnosis-pain-rcna101843. Re-
trieved on November 7, 2023.
Narayan, S. and Gardent, C. (2014). Hybrid simplifica-
tion using deep semantics and machine translation. In
Toutanova, K. and Wu, H., editors, Proceedings of the
52nd Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
435–445, Baltimore, Maryland. Association for Com-
putational Linguistics.
Nascimento, N., Alencar, P., and Cowan, D. (2023). Com-
paring software developers with chatgpt: An empiri-
cal investigation.
National Coordinating Council for Medication Error Re-
porting and Prevention (2023). Dangerous ab-
breviations. https://www.nccmerp.org/dangerous-
abbreviations. Retrieved on November 7, 2023.
NLTK (2023). Vader. https://www.nltk.org/ modules/
nltk/sentiment/vader.html. Retrieved on November 7,
2023.
OpenAI (2023). Chatgpt. https://openai.com/chatgpt. Re-
trieved on November 7, 2023.
Papineni, K., Roukos, S., Ward, T., and Zhu, W.-J. (2002).
Bleu: a method for automatic evaluation of machine
translation. In Isabelle, P., Charniak, E., and Lin, D.,
editors, Proceedings of the 40th Annual Meeting of
the Association for Computational Linguistics, pages
311–318, Philadelphia, Pennsylvania, USA. Associa-
tion for Computational Linguistics.
Prolific (2014). Prolific. https://www.prolific.com/. Re-
trieved on November 20, 2023.
pypi (2022). textstat. https://pypi.org/project/textstat/. Re-
trieved on November 7, 2023.
pypi (2023a). Lexicalrichness. https://pypi.org/project/
lexicalrichness/. Retrieved on November 7, 2023.
pypi (2023b). wordfreq. https://pypi.org/project/wordfreq/.
Retrieved on November 7, 2023.
Automated Medical Text Simplification for Enhanced Patient Access
217