Hinton, G. E. and Roweis, S. (2002). Stochastic neighbor
embedding. In Becker, S., Thrun, S., and Obermayer,
K., editors, Advances in Neural Information Process-
ing Systems, volume 15. MIT Press.
Isola, P., Zhu, J.-Y., Zhou, T., and Efros, A. A. (2017). Image-
to-image translation with conditional adversarial net-
works. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 1125–
1134.
Kamal, K., Yin, Z., Wu, M., and Wu, Z. (2019). Depthwise
separable convolution architectures for plant disease
classification. Computers and electronics in agricul-
ture, 165:104948.
Kim, Y. (2014). Convolutional neural networks for sentence
classification. In Proceedings of the 2014 Conference
on Empirical Methods in Natural Language Processing
(EMNLP). Association for Computational Linguistics.
Kingma, D. P. and Ba, J. (2014). Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2017).
Imagenet classification with deep convolutional neural
networks. Communications of the ACM, 60(6):84–90.
Li, C. and Wand, M. (2016). Combining markov random
fields and convolutional neural networks for image
synthesis. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 2479–
2486.
Liu, C., Chang, X., and Shen, Y.-D. (2020). Unity style
transfer for person re-identification. In Proceedings
of the IEEE/CVF conference on computer vision and
pattern recognition, pages 6887–6896.
Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin,
S., and Guo, B. (2021). Swin transformer: Hierar-
chical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF international conference
on computer vision, pages 10012–10022.
Lungu-Stan, V.-C., Cercel, D.-C., and Pop, F. (2023).
Skindistilvit: Lightweight vision transformer for skin
lesion classification. In International Conference on
Artificial Neural Networks, pages 268–280. Springer.
Mohameth, F., Bingcai, C., and Sada, K. A. (2020). Plant
disease detection with deep learning and feature ex-
traction using plant village. Journal of Computer and
Communications, 8(6):10–22.
Mohanty, S. P., Hughes, D. P., and Salathé, M. (2016). Using
deep learning for image-based plant disease detection.
Frontiers in Plant Science, 7.
Nääs, I. A., Garcia, R. G., and Caldara, F. R. (2020). In-
frared thermal image for assessing animal health and
welfare. Journal of Animal Behaviour and Biometeo-
rology, 2(3):66–72.
Nam, M. G. and Dong, S.-Y. (2023). Classification of com-
panion animals’ ocular diseases: Domain adversarial
learning for imbalanced data. IEEE Access.
Parraga-Alava, J., Cusme, K., Loor, A., and Santander, E.
(2019). Rocole: A robusta coffee leaf images dataset
for evaluation of machine learning based methods in
plant diseases recognition. Data in brief, 25:104414.
Rodriguez-Gallo, Y., Escobar-Benitez, B., and Rodriguez-
Lainez, J. (2023). Robust coffee rust detection us-
ing uav-based aerial rgb imagery. AgriEngineering,
5(3):1415–1431.
Ronneberger, O., Fischer, P., and Brox, T. (2015). U-
net: Convolutional networks for biomedical image
segmentation. In Medical Image Computing and
Computer-Assisted Intervention–MICCAI 2015: 18th
International Conference, Munich, Germany, October
5-9, 2015, Proceedings, Part III 18, pages 234–241.
Springer.
Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R.,
Parikh, D., and Batra, D. (2017). Grad-cam: Visual
explanations from deep networks via gradient-based
localization. In 2017 IEEE International Conference
on Computer Vision (ICCV), pages 618–626.
Siddique, N., Paheding, S., Elkin, C. P., and Devabhaktuni,
V. (2021). U-net and its variants for medical image
segmentation: A review of theory and applications.
Ieee Access, 9:82031–82057.
Simonyan, K. and Zisserman, A. (2015). Very deep con-
volutional networks for large-scale image recognition.
In 3rd International Conference on Learning Repre-
sentations (ICLR 2015). Computational and Biological
Learning Society.
Stauber, J., Lemaire, R., Franck, J., Bonnel, D., Croix,
D., Day, R., Wisztorski, M., Fournier, I., and Salzet,
M. (2008). Maldi imaging of formalin-fixed paraffin-
embedded tissues: application to model animals of
parkinson disease for biomarker hunting. Journal of
Proteome Research, 7(3):969–978.
Sun, M., Huang, W., and Zheng, Y. (2023). Instance-aware
diffusion model for gland segmentation in colon histol-
ogy images. In International Conference on Medical
Image Computing and Computer-Assisted Intervention,
pages 662–672. Springer.
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., Erhan, D., Vanhoucke, V., and Rabi-
novich, A. (2015). Going deeper with convolutions.
In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1–9.
Tassis, L. M., de Souza, J. E. T., and Krohling, R. A. (2021).
A deep learning approach combining instance and se-
mantic segmentation to identify diseases and pests of
coffee leaves from in-field images. Computers and
Electronics in Agriculture, 186:106191.
Thakur, P. S., Sheorey, T., and Ojha, A. (2023). Vgg-icnn: A
lightweight cnn model for crop disease identification.
Multimedia Tools and Applications, 82(1):497–520.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. (2017).
Attention is all you need. Advances in neural informa-
tion processing systems, 30.
Wu, H., Xiao, B., Codella, N., Liu, M., Dai, X., Yuan, L.,
and Zhang, L. (2021). Cvt: Introducing convolutions to
vision transformers. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages
22–31.
Yu, J., Wang, Z., Vasudevan, V., Yeung, L., Seyedhosseini,
M., and Wu, Y. (2022). Coca: Contrastive caption-
Evaluating Data Augmentation Techniques for Coffee Leaf Disease Classification
559