
Islam, M. R., Barua, S., Ahmed, M. U., Begum, S., Aric
`
o,
P., Borghini, G., and Di Flumeri, G. (2020). A novel
mutual information based feature set for drivers’ men-
tal workload evaluation using machine learning. Brain
Sciences, 10(8):551.
Kirushanth, S. and Kabaso, B. (2018). Telematics and
road safety. In 2018 2nd International Confer-
ence on Telematics and Future Generation Networks
(TAFGEN), pages 103–108. IEEE.
Li, P. and Vu, Q. D. (2015). A simple method for identify-
ing parameter correlations in partially observed linear
dynamic models. BMC Systems Biology, 9(1):1–14.
Li, Z., Chen, L., Peng, J., and Wu, Y. (2017). Automatic de-
tection of driver fatigue using driving operation infor-
mation for transportation safety. Sensors, 17(6):1212.
Liang, P. P., Ling, C. K., Cheng, Y., Obolenskiy, A., Liu, Y.,
Pandey, R., Wilf, A., Morency, L.-P., and Salakhutdi-
nov, R. (2023). Multimodal learning without labeled
multimodal data: Guarantees and applications. arXiv
preprint arXiv:2306.04539.
Lu, P., Mishra, S., Xia, T., Qiu, L., Chang, K.-W., Zhu,
S.-C., Tafjord, O., Clark, P., and Kalyan, A. (2022).
Learn to explain: Multimodal reasoning via thought
chains for science question answering. Advances
in Neural Information Processing Systems, 35:2507–
2521.
Meyniel, F., Sigman, M., and Mainen, Z. F. (2015). Confi-
dence as bayesian probability: From neural origins to
behavior. Neuron, 88(1):78–92.
Na, S., Xumin, L., and Yong, G. (2010). Research on k-
means clustering algorithm: An improved k-means
clustering algorithm. In 2010 Third International
Symposium on intelligent information technology and
security informatics, pages 63–67. Ieee.
Papadelis, C., Chen, Z., Kourtidou-Papadeli, C., Bamidis,
P. D., Chouvarda, I., Bekiaris, E., and Maglaveras,
N. (2007). Monitoring sleepiness with on-board
electrophysiological recordings for preventing sleep-
deprived traffic accidents. Clinical Neurophysiology,
118(9):1906–1922.
Rahman, H., Ahmed, M. U., Barua, S., and Begum, S.
(2020). Non-contact-based driver’s cognitive load
classification using physiological and vehicular pa-
rameters. Biomedical Signal Processing and Control,
55:101634.
Respati, S., Bhaskar, A., and Chung, E. (2018). Traffic data
characterisation: Review and challenges. Transporta-
tion research procedia, 34:131–138.
Rumelhart, D. E., Hinton, G. E., Williams, R. J., et al.
(1985). Learning internal representations by error
propagation.
Siami, M., Naderpour, M., and Lu, J. (2020). A mobile
telematics pattern recognition framework for driving
behavior extraction. IEEE Transactions on Intelligent
Transportation Systems, 22(3):1459–1472.
Singh, H. and Kathuria, A. (2021). Analyzing driver be-
havior under naturalistic driving conditions: A review.
Accident Analysis & Prevention, 150:105908.
Taylor, P., Griffiths, N., Bhalerao, A., Anand, S., Popham,
T., Xu, Z., and Gelencser, A. (2016). Data mining
for vehicle telemetry. Applied Artificial Intelligence,
30(3):233–256.
Thiffault, P. and Bergeron, J. (2003). Monotony of road en-
vironment and driver fatigue: a simulator study. Acci-
dent Analysis & Prevention, 35(3):381–391.
Tselentis, D. I. and Papadimitriou, E. (2023). Driver profile
and driving pattern recognition for road safety assess-
ment: Main challenges and future directions. IEEE
Open Journal of Intelligent Transportation Systems.
Vasudevan, K., Das, A. P., Sandhya, B., and Subith, P.
(2017). Driver drowsiness monitoring by learning ve-
hicle telemetry data. In 2017 10th International Con-
ference on Human System Interactions (HSI), pages
270–276. IEEE.
Wang, K., Yang, J., Li, Z., Liu, Y., Xue, J., and Liu, H.
(2022). Naturalistic driving scenario recognition with
multimodal data. In 2022 23rd IEEE International
Conference on Mobile Data Management (MDM),
pages 476–481. IEEE.
Wang, W., Xi, J., Chong, A., and Li, L. (2017). Driv-
ing style classification using a semisupervised sup-
port vector machine. IEEE Transactions on Human-
Machine Systems, 47(5):650–660.
Winlaw, M., Steiner, S. H., MacKay, R. J., and Hilal, A. R.
(2019). Using telematics data to find risky driver be-
haviour. Accident Analysis & Prevention, 131:131–
136.
Zheng, G., Yang, B., Tang, J., Zhou, H.-Y., and Yang,
S. (2023). Ddcot: Duty-distinct chain-of-thought
prompting for multimodal reasoning in language mod-
els. arXiv preprint arXiv:2310.16436.
Zhu, C., Yang, Z., Xia, X., Li, N., Zhong, F., and Liu, L.
(2022). Multimodal reasoning based on knowledge
graph embedding for specific diseases. Bioinformat-
ics, 38(8):2235–2245.
Zhu, X. J. (2005). Semi-supervised learning literature sur-
vey.
ICAART 2024 - 16th International Conference on Agents and Artificial Intelligence
572