
REFERENCES
Almasri, A., Ahmed, A., Almasri, N., Abu Sultan, Y. S.,
Mahmoud, A. Y., Zaqout, I. S., Akkila, A. N., and
Abu-Naser, S. S. (2019). Intelligent tutoring systems
survey for the period 2000-2018.
Aydın,
¨
O. and Karaarslan, E. (2022). Openai chatgpt gen-
erated literature review: Digital twin in healthcare.
Available at SSRN 4308687.
Biswas, S. (2023). Role of chatgpt in computer pro-
gramming.: Chatgpt in computer programming.
Mesopotamian Journal of Computer Science, 2023:8–
16.
Blair, J. A. (2011). Groundwork in the theory of argumenta-
tion: Selected papers of J. Anthony Blair, volume 21.
Springer Science & Business Media.
Cao, C. (2023). Leveraging large language model and
story-based gamification in intelligent tutoring sys-
tem to scaffold introductory programming courses:
A design-based research study. arXiv preprint
arXiv:2302.12834.
Cavalcanti, A. P., Diego, A., Mello, R. F., Mangaroska, K.,
Nascimento, A., Freitas, F., and Ga
ˇ
sevi
´
c, D. (2020).
How good is my feedback? a content analysis of writ-
ten feedback. In Proceedings of the tenth international
conference on learning analytics & knowledge, pages
428–437.
Chung, H. W., Hou, L., Longpre, S., Zoph, B., Tay, Y., Fe-
dus, W., Li, Y., Wang, X., Dehghani, M., Brahma, S.,
et al. (2022). Scaling instruction-finetuned language
models. arXiv preprint arXiv:2210.11416.
Ferretti, R. P. and Graham, S. (2019). Argumentative writ-
ing: Theory, assessment, and instruction. Reading and
Writing, 32:1345–1357.
Ferretti, R. P. and Lewis, W. E. (2018). Argumentative writ-
ing. Best practices in writing instruction, 135.
Finnie-Ansley, J., Denny, P., Becker, B. A., Luxton-Reilly,
A., and Prather, J. (2022). The robots are com-
ing: Exploring the implications of openai codex on
introductory programming. In Proceedings of the
24th Australasian Computing Education Conference,
pages 10–19.
Firat, M. (2023). What chatgpt means for universities: Per-
ceptions of scholars and students. Journal of Applied
Learning and Teaching, 6(1).
Gage, J. T. (1987). The shape of reason: Argumentative
writing in college. (No Title).
Gero, K. I., Liu, V., and Chilton, L. (2022). Sparks: Inspira-
tion for science writing using language models. In De-
signing interactive systems conference, pages 1002–
1019.
Hattie, J. and Timperley, H. (2007). The power of feedback.
Review of educational research, 77(1):81–112.
Heilman, M. and Madnani, N. (2013). Ets: Domain adapta-
tion and stacking for short answer scoring. In Second
Joint Conference on Lexical and Computational Se-
mantics (* SEM), Volume 2: Proceedings of the Sev-
enth International Workshop on Semantic Evaluation
(SemEval 2013), pages 275–279.
Hollingsworth, J. (1960). Automatic graders for pro-
gramming classes. Communications of the ACM,
3(10):528–529.
Hsu, S., Li, T. W., Zhang, Z., Fowler, M., Zilles, C., and
Karahalios, K. (2021). Attitudes surrounding an im-
perfect ai autograder. In Proceedings of the 2021 CHI
conference on human factors in computing systems,
pages 1–15.
Jia, Q., Young, M., Xiao, Y., Cui, J., Liu, C., Rashid, P., and
Gehringer, E. (2022). Insta-reviewer: A data-driven
approach for generating instant feedback on students’
project reports. International Educational Data Min-
ing Society.
Kennedy, M. (1998). Theorizing composition: A criti-
cal sourcebook of theory and scholarship in contem-
porary composition studies. Bloomsbury Publishing
USA.
Kleemola, K., Hyytinen, H., and Toom, A. (2022). The
challenge of position-taking in novice higher educa-
tion students’ argumentative writing. In Frontiers in
education, volume 7, page 885987. Frontiers.
Kortemeyer, G. (2023). Can an ai-tool grade assignments
in an introductory physics course? arXiv preprint
arXiv:2304.11221.
Lee, M., Liang, P., and Yang, Q. (2022). Coauthor: De-
signing a human-ai collaborative writing dataset for
exploring language model capabilities. In Proceed-
ings of the 2022 CHI conference on human factors in
computing systems, pages 1–19.
Lin, J., Dai, W., Lim, L.-A., Tsai, Y.-S., Mello, R. F., Khos-
ravi, H., Gasevic, D., and Chen, G. (2023). Learner-
centred analytics of feedback content in higher educa-
tion. In LAK23: 13th International Learning Analyt-
ics and Knowledge Conference, pages 100–110.
Liu, X., Wang, S., Wang, P., and Wu, D. (2019). Automatic
grading of programming assignments: an approach
based on formal semantics. In 2019 IEEE/ACM 41st
International Conference on Software Engineering:
Software Engineering Education and Training (ICSE-
SEET), pages 126–137. IEEE.
Lo, C. K. (2023). What is the impact of chatgpt on edu-
cation? a rapid review of the literature. Education
Sciences, 13(4):410.
Lovejoy, A. O. (2011). The great chain of being: A study
of the history of an idea. new brunswick.
Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal,
P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A.,
Agarwal, S., et al. (2020). Language models are few-
shot learners. arXiv preprint arXiv:2005.14165.
Messer, M., Brown, N. C., K
¨
olling, M., and Shi, M. (2023).
Automated grading and feedback tools for program-
ming education: A systematic review. arXiv preprint
arXiv:2306.11722.
Mizumoto, A. and Eguchi, M. (2023). Exploring the po-
tential of using an ai language model for automated
essay scoring. Research Methods in Applied Linguis-
tics, 2(2):100050.
Pardo, A., Bartimote, K., Buckingham Shum, S., Daw-
son, S., Gao, J., Ga
ˇ
sevi
´
c, D., Leichtweis, S., Liu,
D., Mart
´
ınez-Maldonado, R., Mirriahi, N., et al.
Analysis of the Effectiveness of Large Language Models in Assessing Argumentative Writing and Generating Feedback
581