
spect to the input image obtained by backpropaga-
tion to align with the gradient coming from guided
backpropagation. The results of our training are eval-
uated according to several interpretability methods
and metrics. Our method offers consistent improve-
ment on most metrics for two networks, while remain-
ing within a small margin of the standard gradient in
terms accuracy.
REFERENCES
Bach, S., Binder, A., Montavon, G., Klauschen, F., M
¨
uller,
K.-R., and Samek, W. (2015). On pixel-wise explana-
tions for non-linear classifier decisions by layer-wise
relevance propagation. PloS one, 10(7).
Chattopadhay, A., Sarkar, A., Howlader, P., and Balasub-
ramanian, V. N. (2018). Grad-CAM++: Generalized
gradient-based visual explanations for deep convolu-
tional networks. In WACV.
Drucker, H. and Le Cun, Y. (1991). Double backpropaga-
tion increasing generalization performance. In IJCNN.
Finlay, C., Oberman, A. M., and Abbasi, B. (2018). Im-
proved robustness to adversarial examples using Lip-
schitz regularization of the loss.
Fu, R., Hu, Q., Dong, X., Guo, Y., Gao, Y., and Li, B.
(2020). Axiom-based Grad-CAM: Towards accurate
visualization and explanation of CNNs. arXiv preprint
arXiv:2008.02312.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resid-
ual learning for image recognition. In CVPR.
Jiang, P.-T., Zhang, C.-B., Hou, Q., Cheng, M.-M., and Wei,
Y. (2021). LayerCAM: Exploring hierarchical class
activation maps for localization. TIP.
Krizhevsky, A. (2009). Learning multiple layers of features
from tiny images. pages 32–33.
Lipton, Z. C. (2018). The mythos of model interpretability:
In machine learning, the concept of interpretability is
both important and slippery. Queue, 16(3):31–57.
Lundberg, S. M. and Lee, S.-I. (2017). A unified approach
to interpreting model predictions. In NeurIPS.
Luo, Y., Zhu, J., and Pfister, T. (2019). A simple yet ef-
fective baseline for robust deep learning with noisy
labels. arXiv preprint arXiv:1909.09338.
Lyu, C., Huang, K., and Liang, H.-N. (2015). A unified gra-
dient regularization family for adversarial examples.
In international conference on data mining.
Montavon, G., Samek, W., and M
¨
uller, K.-R. (2018). Meth-
ods for interpreting and understanding deep neural
networks. Digital Signal Processing, 73:1–15.
Omeiza, D., Speakman, S., Cintas, C., and Weldermariam,
K. (2019). Smooth Grad-CAM++: An enhanced in-
ference level visualization technique for deep con-
volutional neural network models. arXiv preprint
arXiv:1908.01224.
Petsiuk, V., Das, A., and Saenko, K. (2018). RISE: Ran-
domized input sampling for explanation of black-box
models. arXiv preprint arXiv:1806.07421.
Philipp, G. and Carbonell, J. G. (2018). The nonlinear-
ity coefficient-predicting generalization in deep neural
networks. arXiv preprint arXiv:1806.00179.
Ramaswamy, H. G. et al. (2020). Ablation-CAM: Vi-
sual explanations for deep convolutional network via
gradient-free localization. In WACV.
Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). ” why
Should I Trust You?” explaining the Predictions of
Any Classifier. In SIGKDD.
Ross, A. S. and Doshi-Velez, F. (2018). Improving the ad-
versarial robustness and interpretability of deep neu-
ral networks by regularizing their input gradients. In
AAAI.
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and
Chen, L.-C. (2018). MobileNetv2: Inverted residuals
and linear bottlenecks. In CVPR.
Seck, I., Loosli, G., and Canu, S. (2019). L 1-norm double
backpropagation adversarial defense. arXiv preprint
arXiv:1903.01715.
Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R.,
Parikh, D., and Batra, D. (2017). Grad-CAM: Visual
explanations from deep networks via gradient-based
localization. In ICCV.
Simon-Gabriel, C.-J., Ollivier, Y., Bottou, L., Sch
¨
olkopf,
B., and Lopez-Paz, D. (2018). Adversarial vulnerabil-
ity of neural networks increases with input dimension.
Simonyan, K., Vedaldi, A., and Zisserman, A. (2014).
Deep inside convolutional networks: Visualising im-
age classification models and saliency maps. ICLR
Workshop.
Smilkov, D., Thorat, N., Kim, B., Vi
´
egas, F., and Watten-
berg, M. (2017). Smoothgrad: removing noise by
adding noise. arXiv preprint arXiv:1706.03825.
Springenberg, J. T., Dosovitskiy, A., Brox, T., and Ried-
miller, M. (2014). Striving for simplicity: The all con-
volutional net. arXiv preprint arXiv:1412.6806.
Srinivas, S. and Fleuret, F. (2018). Knowledge transfer with
jacobian matching. In International Conference on
Machine Learning, pages 4723–4731. PMLR.
Sundararajan, M., Taly, A., and Yan, Q. (2017). Axiomatic
attribution for deep networks. In ICML.
Wang, H., Wang, Z., Du, M., Yang, F., Zhang, Z., Ding, S.,
Mardziel, P., and Hu, X. (2020). Score-CAM: Score-
weighted visual explanations for convolutional neural
networks. In CVPR work.
Zhang, H., Torres, F., Sicre, R., Avrithis, Y., and Ayache,
S. (2023). Opti-CAM: Optimizing saliency maps for
interpretability. arXiv preprint arXiv:2301.07002.
Zhou, B., Khosla, A., Lapedriza, A., Oliva, A., and Tor-
ralba, A. (2016). Learning deep features for discrimi-
native localization. In CVPR.
VISAPP 2024 - 19th International Conference on Computer Vision Theory and Applications
764