ACKNOWLEDGEMENTS
This work was supported by the Silesian University
of Technology funds through the grant for
maintaining and developing research potential, and
by the Silesian University of Technology funds
through the Excellence Initiative—Research
University program (Grant 02/080/SDU/10-21-01).
REFERENCES
Alpar, O. (2023). A mathematical fuzzy fusion framework
for whole tumor segmentation in multimodal MRI
using Nakagami imaging. Expert Systems with
Applications, 216. https://doi.org/10.1016/j.eswa.
2022.119462.
Baid, U., Ghodasara, S., Bilello, M., Mohan, S., Calabrese,
E., Colak, E., Farahani, K., Kalpathy-Cramer, J.,
Kitamura, F.C., Pati, S., Prevedello, L.M., Rudie, J.D.,
Sako, C., Shinohara, R.T., Bergquist, T., Chai, R.,
Eddy, J.A., Elliott, J., Reade, W.C., Schaffter, T., Yu,
T., Zheng, J., Annotators, B., Davatzikos, C., Mongan,
J.T., Hess, C.P., Cha, S., Villanueva-Meyer, J.E.,
Freymann, J.B., Kirby, J.S., Wiestler, B., Crivellaro,
P.S., R.Colen, R., Kotrotsou, A., Marcus, D.,
Milchenko, M., Nazeri, A., Fathallah-Shaykh, H.M.,
Wiest, R., Jakab, A., Weber, M., Mahajan, A., Menze,
B.H., Flanders, A.E., & Bakas, S. (2021). The RSNA-
ASNR-MICCAI BraTS 2021 Benchmark on Brain
Tumor Segmentation and Radiogenomic Classification.
ArXiv, abs/2107.02314.
Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M.,
Kirby, J. S., Freymann, J. B., Farahani, K., &
Davatzikos, C. (2017). Advancing The Cancer Genome
Atlas glioma MRI collections with expert segmentation
labels and radiomic features. Scientific data, 4, 170117.
https://doi.org/10.1038/sdata.2017.117.
Bakas S, Akbari H, Sotiras A, Bilello M, Rozycki M, Kirby
J, Freymann J, Farahani K, Davatzikos C. (2017).
Segmentation Labels for the Pre-operative Scans of the
TCGA-GBM collection [Data set]. The Cancer Imaging
Archive. DOI: 10.7937/K9/TCIA.2017.KLXWJJ1Q.
Bakas S, Akbari H, Sotiras A, Bilello M, Rozycki M, Kirby
J, Freymann J, Farahani K, Davatzikos C. (2017)
Advancing The Cancer Genome Atlas glioma MRI
collections with expert segmentation labels and
radiomic features Nature Scientific Data, 4:170117
DOI: 10.1038/sdata.2017.117.
Beyer, T., Bidaut, L., Dickson, J., Kachelriess, M.,
Kiessling, F., Leitgeb, R., Ma, J., Shiyam Sundar, L. K.,
Theek, B., & Mawlawi, O. (2020). What scans we will
read: imaging instrumentation trends in clinical
oncology. Cancer imaging : the official publication of
the International Cancer Imaging Society, 20(1), 38.
https://doi.org/10.1186/s40644-020-00312-3
Bukhari, S.T., Mohy-ud-Din, H. (2022). E1D3 U-Net for
Brain Tumor Segmentation: Submission to the RSNA-
ASNR-MICCAI BraTS 2021 challenge. In: Crimi, A.,
Bakas, S. (eds) Brainlesion: Glioma, Multiple
Sclerosis, Stroke and Traumatic Brain Injuries.
BrainLes 2021. Lecture Notes in Computer Science, vol
12963. Springer, Cham. https://doi.org/10.1007/978-3-
031-09002-8_25
van Griethuysen, J. J. M., Fedorov, A., Parmar, C., Hosny,
A., Aucoin, N., Narayan, V., Beets-Tan, R. G. H.,
Fillion-Robin, J. C., Pieper, S., & Aerts, H. J. W. L.
(2017). Computational Radiomics System to Decode
the Radiographic Phenotype. Cancer research, 77(21),
e104–e107. https://doi.org/10.1158/0008-5472.CAN-
17-0339
Hajianfar, G., Shiri, I., Maleki, H., Oveisi, N., Haghparast,
A., Abdollahi, H., Oveisi, M. (2019). Noninvasive O6
Methylguanine-DNA Methyltransferase Status
Prediction in Glioblastoma Multiforme Cancer Using
Magnetic Resonance Imaging Radiomics Features:
Univariate and Multivariate Radiogenomics Analysis.
World Neurosurgery. DOI: 10.1016/j.wneu.2019.
08.232.
Hu, X., Luo, W., Hu, J., Guo, S., Huang, W., Scott, M. R.,
Wiest, R., Dahlweid, M., & Reyes, M. (2020). Brain
SegNet: 3D local refinement network for brain lesion
segmentation. BMC medical imaging, 20(1), 17.
https://doi.org/10.1186/s12880-020-0409-2.
Korfiatis, P., Kline, T. L., Coufalova, L., Lachance, D. H.,
Parney, I. F., Carter, R. E., Buckner, J. C., & Erickson,
B. J. (2016). MRI texture features as biomarkers to
predict MGMT methylation status in glioblastomas.
Medical physics, 43(6), 2835–2844. https://doi.org/
10.1118/1.4948668.
Korfiatis, P., Kline, T. L., Lachance, D. H., Parney, I. F.,
Buckner, J. C., & Erickson, B. J. (2017). Residual Deep
Convolutional Neural Network Predicts MGMT
Methylation Status. Journal of digital imaging, 30(5),
622–628. https://doi.org/10.1007/s10278-017-0009-z.
Kotowski, K., Kucharski, D., Machura, B., Adamski, S.,
Gutierrez Becker, B., Krason, A., Zarudzki, L., Tessier,
J., & Nalepa, J. (2023). Detecting liver cirrhosis in
computed tomography scans using clinically-inspired
and radiomic features. Computers in biology and
medicine, 152, 106378. https://doi.org/10.1016/j.
compbiomed.2022.106378.
Isensee, F., Schell, M., Pflueger, I., Brugnara, G.,
Bonekamp, D., Neuberger, U., Wick, A., Schlemmer,
H. P., Heiland, S., Wick, W., Bendszus, M., Maier-
Hein, K. H., & Kickingereder, P. (2019). Automated
brain extraction of multisequence MRI using artificial
neural networks. Human brain mapping, 40(17), 4952–
4964. https://doi.org/10.1002/hbm.24750.
Menze, B. H., Jakab, A., Bauer, S., Kalpathy-Cramer, J.,
Farahani, K., Kirby, J., Burren, Y., Porz, N., Slotboom,
J., Wiest, R., Lanczi, L., Gerstner, E., Weber, M. A.,
Arbel, T., Avants, B. B., Ayache, N., Buendia, P.,
Collins, D. L., Cordier, N., Corso, J. J., … Van
Leemput, K. (2015). The Multimodal Brain Tumor
Image Segmentation Benchmark (BRATS). IEEE
transactions on medical imaging, 34(10), 1993–2024.
https://doi.org/10.1109/TMI.2014.2377694.