Therisurnet - a computationally efficient thermal im-
age super-resolution network. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR) Workshops.
Deepak, S., Sahoo, S., and Patra, D. (2021). Super-
resolution of thermal images using gan network.
In 2021 Advanced Communication Technologies and
Signal Processing (ACTS), pages 1–5.
Guo, C., Li, C., Guo, J., Cong, R., Fu, H., and Han, P.
(2018). Hierarchical features driven residual learning
for depth map super-resolution. IEEE Transactions on
Image Processing, 28(5):2545–2557.
Gupta, H. and Mitra, K. (2020). Pyramidal edge-maps and
attention based guided thermal super-resolution. In
Computer Vision–ECCV 2020 Workshops: Glasgow,
UK, August 23–28, 2020, Proceedings, Part III 16,
pages 698–715. Springer.
Gupta, H. and Mitra, K. (2021). Toward unaligned guided
thermal super-resolution. IEEE Transactions on Im-
age Processing, 31:433–445.
Han, J., Shoeiby, M., Petersson, L., and Armin, M. A.
(2021). Dual contrastive learning for unsupervised
image-to-image translation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition Workshops.
Klein, S., Staring, M., Murphy, K., Viergever, M. A., and
Pluim, J. P. W. (2009). elastix: A toolbox for intensity-
based medical image registration. IEEE Transactions
on Medical Imaging, 29(1):196–205.
Liu, W., Chen, X., Yang, J., and Wu, Q. (2017). Robust
color guided depth map restoration. IEEE Transac-
tions on Image Processing, 26:315–327.
Mandanici, E., Tavasci, L., Corsini, F., and Gandolfi, S.
(2019). A multi-image super-resolution algorithm ap-
plied to thermal imagery. Applied Geomatics, 11:215–
228.
Mehri, A., Ardakani, P. B., and Sappa, A. D. (2021a).
Linet: A lightweight network for image super reso-
lution. In 2020 25th International Conference on Pat-
tern Recognition (ICPR), pages 7196–7202. IEEE.
Mehri, A., Ardakani, P. B., and Sappa, A. D. (2021b). Mpr-
net: Multi-path residual network for lightweight im-
age super resolution. In Proceedings of the IEEE/CVF
Winter Conference on Applications of Computer Vi-
sion, pages 2704–2713.
Park, T., Efros, A. A., Zhang, R., and Zhu, J.-Y. (2020).
Contrastive learning for unpaired image-to-image
translation. In European Conference on Computer Vi-
sion.
Prajapati, K., Chudasama, V., Patel, H., Sarvaiya, A., Upla,
K. P., Raja, K., Ramachandra, R., and Busch, C.
(2021). Channel split convolutional neural network
(chasnet) for thermal image super-resolution. In Pro-
ceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 4368–4377.
Rivadeneira, R. E., Sappa, A. D., Vintimilla, B. X., Bin, D.,
Ruodi, L., Shengye, L., Zhong, Z., Liu, X., Jiang, J.,
and Wang, C. (2023). Thermal image super-resolution
challenge results. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition
Workshops.
Su
´
arez, P. L. and Sappa, A. D. (2023). Toward a thermal
image-like representation. In Proceedings of the In-
ternational joint Conference on Computer Vision.
Thuan, N. D., Dong, T. P., Manh, B. Q., Thai, H. A., Trung,
T. Q., and Hong, H. S. (2022). Edge-focus thermal im-
age super-resolution using generative adversarial net-
work. In 2022 International Conference on Multime-
dia Analysis and Pattern Recognition (MAPR), pages
1–6.
Wang, B., Zou, Y., Zhang, L., Li, Y., Chen, Q., and Zuo, C.
(2022). Multimodal super-resolution reconstruction of
infrared and visible images via deep learning. Optics
and Lasers in Engineering, 156:107078.
Zhang, M., Wu, Q., Guo, J., Li, Y., and Gao, X.
(2022). Heat transfer-inspired network for image
super-resolution reconstruction. IEEE Transactions
on neural networks and learning systems.
Zhang, W., Sui, X., Gu, G., Chen, Q., and Cao, H. (2021).
Infrared thermal imaging super-resolution via multi-
scale spatio-temporal feature fusion network. IEEE
Sensors Journal, 21(17):19176–19185.
Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., and Fu,
Y. (2018). Image super-resolution using very deep
residual channel attention networks. In Proceedings of
the European conference on computer vision (ECCV),
pages 286–301.
Zhu, J.-Y., Park, T., Isola, P., and Efros, A. A. (2017).
Unpaired image-to-image translation using cycle-
consistent adversarial networks. In Proceedings of
the IEEE international conference on computer vi-
sion, pages 2223–2232.
A Generative Model for Guided Thermal Image Super-Resolution
771