
homogeneous ensemble methods.
For future work, researchers should consider us-
ing multiple inputs, mixed data, and 3D transformer
model ensembles based on multiple ROIs to enhance
the classification model performance and reliability.
REFERENCES
ADNI (2023). Alzheimer’s Disease Neuroimaging Initia-
tive. http://adni.loni.usc.edu.
AIBL (2023). Australian Imaging, Biomarker & Lifestyle
Flagship Study of Ageing. https://aibl.csiro.au.
Altay, F., S
´
anchez, G. R., James, Y., Faraone, S. V., Veli-
pasalar, S., and Salekin, A. (2021). Preclinical stage
alzheimer’s disease detection using magnetic reso-
nance image scans. Proceedings of the AAAI Confer-
ence on Artificial Intelligence, 35(17):15088–15097.
Bae, J. B., Lee, S., Jung, W., Park, S., Kim, W., Oh, H., Han,
J. W., Kim, G. E., Kim, J. S., Kim, J. H., and Kim,
K. W. (2020). Identification of Alzheimer’s disease
using a convolutional neural network model based on
T1-weighted magnetic resonance imaging. Scientific
Reports, 10(1):1–10.
Castro-Silva., J. A., Moreno-Garc
´
ıa., M. N., Guachi-
Guachi., L., and Peluffo-Ord
´
o
˜
nez., D. H. (2022). In-
stance selection on cnns for alzheimer’s disease clas-
sification from mri. In Proceedings of the 11th Inter-
national Conference on Pattern Recognition Applica-
tions and Methods - ICPRAM,, pages 330–337. IN-
STICC, SciTePress.
Choi, J. Y. and Lee, B. (2020). Combining of multiple
deep networks via ensemble generalization loss, based
on mri images, for alzheimer’s disease classification.
IEEE Signal Processing Letters, 27:206–210.
FSL (2023). Templates and Atlases included with FSL),
https://fsl.fmrib.ox.ac.uk/fsl/fslwiki/Atlases.
Hu, Z., Li, Y., Wang, Z., Zhang, S., and Hou, W. (2023).
Conv-swinformer: Integration of cnn and shift win-
dow attention for alzheimer’s disease classification.
Computers in Biology and Medicine, 164.
Huang, Y. and Li, W. (2023). Resizer swin transformer-
based classification using smri for alzheimer’s dis-
ease. Applied Sciences (Switzerland), 13.
Khan, N. M., Abraham, N., and Hon, M. (2019). Trans-
fer Learning with Intelligent Training Data Selection
for Prediction of Alzheimer’s Disease. IEEE Access,
7:72726–72735.
Li, C., Cui, Y., Luo, N., Liu, Y., Bourgeat, P., Fripp, J., and
Jiang, T. (2022). Trans-resnet: Integrating transform-
ers and cnns for alzheimer’s disease classification. In
2022 IEEE 19th International Symposium on Biomed-
ical Imaging (ISBI), pages 1–5.
Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin,
S., and Guo, B. (2021). Swin transformer: Hierarchi-
cal vision transformer using shifted windows. In 2021
IEEE/CVF International Conference on Computer Vi-
sion (ICCV), pages 9992–10002.
Lyu, Y., Yu, X., Zhu, D., and Zhang, L. (2022). Classifi-
cation of alzheimer’s disease via vision transformer:
Classification of alzheimer’s disease via vision trans-
former. ACM International Conference Proceeding
Series, pages 463–468.
Mora-Rubio, A., Bravo-Ort
´
ız, M. A., Arredondo, S. Q., Tor-
res, J. M. S., Ruz, G. A., and Tabares-Soto, R. (2023).
Classification of alzheimer’s disease stages from mag-
netic resonance images using deep learning. PeerJ
Computer Science, 9.
OASIS (2023). Open Access Series of Imaging Studies.
http://www.oasis-brains.org.
Pan, D., Luo, G., Zeng, A., Zou, C., Liang, H., Wang,
J., Zhang, T., Yang, B., and the Alzheimer’s Dis-
ease Neuroimaging Initiative (2022). Adaptive 3dcnn-
based interpretable ensemble model for early diag-
nosis of alzheimer’s disease. IEEE Transactions on
Computational Social Systems, pages 1–20.
Qin, Z., Liu, Z., Guo, Q., and Zhu, P. (2022). 3d
convolutional neural networks with hybrid attention
mechanism for early diagnosis of alzheimer’s dis-
ease. Biomedical Signal Processing and Control,
77:103828.
Sabzevari, M., Mart
´
ınez-Mu
˜
noz, G., and Su
´
arez, A. (2022).
Building heterogeneous ensembles by pooling homo-
geneous ensembles. International Journal of Machine
Learning and Cybernetics, 13(2):551–558.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, L., and Polosukhin, I.
(2017). Attention is all you need.
Wen, J., Thibeau-Sutre, E., Diaz-Melo, M., Samper-
Gonz
´
alez, J., Routier, A., Bottani, S., Dormont, D.,
Durrleman, S., Burgos, N., and Colliot, O. (2020).
Overview of classification of Alzheimer’s disease.
Medical Image Analysis, 63.
WHO (2023). World Health Organization. https://www.wh
o.int/news-room/fact-sheets/detail/dementia.
Xin, J., Wang, A., Guo, R., Liu, W., and Tang, X. (2023).
Cnn and swin-transformer based efficient model for
alzheimer’s disease diagnosis with smri. Biomedical
Signal Processing and Control, 86.
Young, S., Abdou, T., and Bener, A. (2018). Deep super
learner: A deep ensemble for classification problems.
Lecture Notes in Computer Science (including sub-
series Lecture Notes in Artificial Intelligence and Lec-
ture Notes in Bioinformatics), 10832 LNAI:84–95.
Yu, J. and Lee, T. M. (2020). Verbal memory and hippocam-
pal volume predict subsequent fornix microstructure
in those at risk for alzheimer’s disease. Brain Imaging
and Behavior, 14:2311–2322.
Zaabi, M., Smaoui, N., Derbel, H., and Hariri, W. (2020).
Alzheimer’s disease detection using convolutional
neural networks and transfer learning based methods.
In 2020 17th International Multi-Conference on Sys-
tems, Signals & Devices (SSD), pages 939–943.
Zhang, Z. and Khalvati, F. (2022). Introducing vision trans-
former for alzheimer’s disease classification task with
3d input.
ICPRAM 2024 - 13th International Conference on Pattern Recognition Applications and Methods
460