cross-lingual representation learning at scale. In An-
nual Meeting of the Association for Computational
Linguistics.
Croft, R., Xie, Y., and Babar, M. A. (2022). Data prepara-
tion for software vulnerability prediction: A system-
atic literature review. IEEE Transactions on Software
Engineering, 49(3):1044–1063.
Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
(2019). Bert: Pre-training of deep bidirectional trans-
formers for language understanding. In North Amer-
ican Chapter of the Association for Computational
Linguistics.
Eberendu, A. C., Udegbe, V. I., Ezennorom, E. O., Ibegbu-
lam, A. C., Chinebu, T. I., et al. (2022). A systematic
literature review of software vulnerability detection.
European Journal of Computer Science and Informa-
tion Technology, 10(1):23–37.
Ferrara, P., Mandal, A. K., Cortesi, A., and Spoto, F. (2021).
Static analysis for discovering iot vulnerabilities. In-
ternational Journal on Software Tools for Technology
Transfer, 23:71–88.
He, P., Gao, J., and Chen, W. (2021). Debertav3: Improving
deberta using electra-style pre-training with gradient-
disentangled embedding sharing. arXiv preprint
arXiv:2111.09543.
Huang, G., Li, Y., Wang, Q., Ren, J., Cheng, Y., and
Zhao, X. (2019). Automatic classification method for
software vulnerability based on deep neural network.
IEEE Access, 7:28291–28298.
Kalouptsoglou, I., Siavvas, M., Ampatzoglou, A., Keha-
gias, D., and Chatzigeorgiou, A. (2023). Software
vulnerability prediction: A systematic mapping study.
Information and Software Technology, page 107303.
Karl, F. and Scherp, A. (2022). Transformers are short text
classifiers: A study of inductive short text classifiers
on benchmarks and real-world datasets. arXiv preprint
arXiv:2211.16878.
Katsadouros, E. and Patrikakis, C. (2022). A survey on
vulnerability prediction using GNNs. In Proceedings
of the 26th Pan-Hellenic Conference on Informatics,
pages 38–43.
Lallie, H. S., Debattista, K., and Bal, J. (2020). A review
of attack graph and attack tree visual syntax in cyber
security. Computer Science Review, 35:100219.
Levshun, D. (2023a). Comparative analysis of machine
learning methods in vulnerability categories predic-
tion based on configuration similarity. In International
Symposium on Intelligent and Distributed Computing,
pages 231–242. Springer.
Levshun, D. (2023b). Comparative analysis of machine
learning methods in vulnerability metrics transforma-
tion. In International Conference on Intelligent In-
formation Technologies for Industry, pages 60–70.
Springer.
Levshun, D. and Chechulin, A. (2023). Vulnerability cat-
egorization for fast multistep attack modelling. In
2023 33rd Conference of Open Innovations Associa-
tion (FRUCT), pages 169–175. IEEE.
Levshun, D., Kotenko, I., and Chechulin, A. (2021). The
application of the methodology for secure cyber–
physical systems design to improve the semi-natural
model of the railway infrastructure. Microprocessors
and Microsystems, 87:103482.
Levshun, D. S., Gaifulina, D. A., Chechulin, A. A., and
Kotenko, I. V. (2020). Problematic issues of informa-
tion security of cyber-physical systems. Informatics
and automation, 19(5):1050–1088.
Li, Y., Huang, G.-q., Wang, C.-z., and Li, Y.-c. (2019).
Analysis framework of network security situational
awareness and comparison of implementation meth-
ods. EURASIP Journal on Wireless Communications
and Networking, 2019(1):1–32.
Liu, X. (2020). A network attack path prediction method
using attack graph. Journal of Ambient Intelligence
and Humanized Computing, pages 1–8.
Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov,
V. (2019). Roberta: A robustly optimized bert pre-
training approach. arXiv preprint arXiv:1907.11692.
Mell, P., Scarfone, K., and Romanosky, S. (2006). Com-
mon vulnerability scoring system. IEEE Security &
Privacy, 4(6):85–89.
Shen, Z. and Chen, S. (2020). A survey of automatic soft-
ware vulnerability detection, program repair, and de-
fect prediction techniques. Security and Communica-
tion Networks, 2020:1–16.
Spring, J. M., Householder, A., Hatleback, E., Manion,
A., Oliver, M., Sarvapalli, V., Tyzenhaus, L., and
Yarbrough, C. (2021). Prioritizing vulnerability re-
sponse: A stakeholder-specific vulnerability catego-
rization (version 2.0). Technical report, Technical Re-
port. CARNEGIE-MELLON UNIV PITTSBURGH
PA.
Vulnerabilities, C. (2005). Common vulnerabilities and ex-
posures. Published CVE Records.[Online] Available:
https://www. cve. org/About/Metrics.
Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue,
C., Moi, A., Cistac, P., Rault, T., Louf, R., Funtow-
icz, M., Davison, J., Shleifer, S., von Platen, P., Ma,
C., Jernite, Y., Plu, J., Xu, C., Scao, T. L., Gugger,
S., Drame, M., Lhoest, Q., and Rush, A. M. (2020).
Transformers: State-of-the-art natural language pro-
cessing. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.
Yosifova, V., Tasheva, A., and Trifonov, R. (2021). Pre-
dicting vulnerability type in common vulnerabilities
and exposures (CVE) database with machine learning
classifiers. In 2021 12th National Conference with In-
ternational Participation (ELECTRONICA), pages 1–
6. IEEE.
Zhang, S., Caragea, D., and Ou, X. (2011). An empirical
study on using the national vulnerability database to
predict software vulnerabilities. In Database and Ex-
pert Systems Applications: 22nd International Con-
ference, DEXA 2011, Toulouse, France, August 29-
September 2, 2011. Proceedings, Part I 22, pages
217–231. Springer.
Exploring BERT for Predicting Vulnerability Categories in Device Configurations
461