
International Conference on Multimedia and Expo
(ICME), pages 1–6.
Chollet, F. (2017). Xception: Deep learning with depthwise
separable convolutions. In Proceedings of the IEEE
conference on computer vision and pattern recogni-
tion, pages 1251–1258.
Ciftci, U. A., Demir, I., and Yin, L. (2020). Fakecatcher:
Detection of synthetic portrait videos using biological
signals. IEEE transactions on pattern analysis and
machine intelligence.
DeepfakeVFX.com (2023). DeepFaceLab - Deep-
fakeVFX.com — deepfakevfx.com. https://www.
deepfakevfx.com/downloads/deepfacelab/. [Accessed
21-Jun-2023].
Deng, Y., Yang, J., Chen, D., Wen, F., and Tong, X. (2020).
Disentangled and controllable face image generation
via 3d imitative-contrastive learning.
Durall, R., Keuper, M., Pfreundt, F.-J., and Keuper, J.
(2019). Unmasking deepfakes with simple features.
arXiv preprint arXiv:1911.00686.
Elhassan, A., Al-Fawa’reh, M., Jafar, M. T., Ababneh, M.,
and Jafar, S. T. (2022). Dft-mf: Enhanced deepfake
detection using mouth movement and transfer learn-
ing. SoftwareX, 19:101115.
FaceApp (2023). FaceApp: Face Editor — faceapp.com.
https://www.faceapp.com/. [Accessed 21-Jun-2023].
Firc, A., Malinka, K., and Han
´
a
ˇ
cek, P. (2023). Deepfakes
as a threat to a speaker and facial recognition: An
overview of tools and attack vectors. Heliyon.
Gomes, T. L., Martins, R., Ferreira, J., and Nascimento,
E. R. (2020). Do as i do: Transferring human mo-
tion and appearance between monocular videos with
spatial and temporal constraints.
Haliassos, A., Vougioukas, K., Petridis, S., and Pantic, M.
(2021). Lips don’t lie: A generalisable and robust ap-
proach to face forgery detection. In Proceedings of the
IEEE/CVF conference on computer vision and pattern
recognition, pages 5039–5049.
Hubens, N., Mancas, M., Gosselin, B., Preda, M., and Za-
haria, T. (2021). Fake-buster: A lightweight solution
for deepfake detection. In Applications of Digital Im-
age Processing XLIV, volume 11842, pages 146–154.
SPIE.
Ismail, A., Elpeltagy, M., S. Zaki, M., and Eldahshan,
K. (2021). A new deep learning-based methodology
for video deepfake detection using xgboost. Sensors,
21(16):5413.
Karasavva, V. and Noorbhai, A. (2021). The real threat of
deepfake pornography: A review of canadian policy.
Cyberpsychology, Behavior, and Social Networking,
24(3):203–209. PMID: 33760666.
Karras, T., Laine, S., and Aila, T. (2019). A style-based
generator architecture for generative adversarial net-
works.
Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J.,
and Aila, T. (2020). Analyzing and improving the im-
age quality of stylegan.
Lattas, A., Moschoglou, S., Gecer, B., Ploumpis, S., Tri-
antafyllou, V., Ghosh, A., and Zafeiriou, S. (2020).
Avatarme: Realistically renderable 3d facial recon-
struction ”in-the-wild”.
Nirkin, Y., Keller, Y., and Hassner, T. (2019). Fsgan: Sub-
ject agnostic face swapping and reenactment.
Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., and Chen,
M. (2022). Hierarchical text-conditional image gener-
ation with clip latents.
Rana, M. S., Nobi, M. N., Murali, B., and Sung, A. H.
(2022). Deepfake detection: A systematic literature
review. IEEE Access.
Ranjan, P., Patil, S., and Kazi, F. (2020). Improved general-
izability of deep-fakes detection using transfer learn-
ing based cnn framework. In 2020 3rd international
conference on information and computer technologies
(ICICT), pages 86–90. IEEE.
Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. (2022). High-resolution image synthesis
with latent diffusion models. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 10684–10695.
Rossler, A., Cozzolino, D., Verdoliva, L., Riess, C., Thies,
J., and Nießner, M. (2019). Faceforensics++: Learn-
ing to detect manipulated facial images. In Proceed-
ings of the IEEE/CVF international conference on
computer vision, pages 1–11.
Tariq, S., Lee, S., Kim, H., Shin, Y., and Woo, S. S. (2018).
Detecting both machine and human created fake face
images in the wild. In Proceedings of the 2nd interna-
tional workshop on multimedia privacy and security,
pages 81–87.
Thies, J., Zollh
¨
ofer, M., and Nießner, M. (2019). Deferred
neural rendering: Image synthesis using neural tex-
tures. Acm Transactions on Graphics (TOG), 38(4):1–
12.
Thies, J., Zollhofer, M., Stamminger, M., Theobalt, C., and
Nießner, M. (2016). Face2face: Real-time face cap-
ture and reenactment of rgb videos. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 2387–2395.
Yang, Y. and Soatto, S. (2020). FDA: fourier do-
main adaptation for semantic segmentation. CoRR,
abs/2004.05498.
Yuezun Li, Xin Yang, P. S. H. Q. and Lyu, S. (2020). Celeb-
df: A large-scale challenging dataset for deepfake
forensics. In IEEE Conference on Computer Vision
and Patten Recognition (CVPR).
Zhao, H., Zhou, W., Chen, D., Wei, T., Zhang, W., and
Yu, N. (2021a). Multi-attentional deepfake detec-
tion. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 2185–
2194.
Zhao, L., Zhang, M., Ding, H., and Cui, X. (2021b).
Mff-net: deepfake detection network based on multi-
feature fusion. Entropy, 23(12):1692.
Zhou, M., Yu, H., Huang, J., Zhao, F., Gu, J., Loy, C. C.,
Meng, D., and Li, C. (2022). Deep fourier up-
sampling. arXiv preprint arXiv:2210.05171.
Enhanced Deepfake Detection Using Frequency Domain Upsampling
803