
Beltzer, M. L., Ameko, M. K., Daniel, K. E., Daros, A. R.,
Boukhechba, M., Barnes, L. E., and Teachman, B. A.
(2022). Building an emotion regulation recommender
algorithm for socially anxious individuals using con-
textual bandits. British Journal of Clinical Psychol-
ogy, 61(S1):51–72.
Bertsimas, D., Klasnja, P., Murphy, S., and Na, L. (2022).
Data-driven Interpretable Policy Construction for Per-
sonalized Mobile Health. In 2022 IEEE International
Conference on Digital Health (ICDH), pages 13–22,
Barcelona, Spain. IEEE.
Coronato, A., Naeem, M., De Pietro, G., and Paragliola, G.
(2020). Reinforcement learning for intelligent health-
care applications: A survey. Artificial Intelligence in
Medicine, 109:101964.
Daskalova, N., Yoon, J., Wang, Y., Araujo, C., Beltran,
G., Nugent, N., McGeary, J., Williams, J. J., and
Huang, J. (2020). SleepBandits: Guided Flexible Self-
Experiments for Sleep. In Proceedings of the 2020
CHI Conference on Human Factors in Computing Sys-
tems, pages 1–13, Honolulu HI USA. ACM.
Delmas, A., Clement, B., Oudeyer, P.-Y., and Sauz
´
eon, H.
(2018). Fostering Health Education With a Serious
Game in Children With Asthma: Pilot Studies for As-
sessing Learning Efficacy and Automatized Learning
Personalization. Frontiers in Education, 3:99.
den Hengst, F., Grua, E. M., el Hassouni, A., and Hoogen-
doorn, M. (2020). Reinforcement learning for person-
alization: A systematic literature review. Data Sci-
ence, 3(2):107–147. Number: 2.
Di, S., Petch, J., Gerstein, H. C., Zhu, R., and Sherifali, D.
(2022). Optimizing Health Coaching for Patients With
Type 2 Diabetes Using Machine Learning: Model De-
velopment and Validation Study. JMIR Formative Re-
search, 6(9):e37838.
Dodd, S., Clarke, M., Becker, L., Mavergames, C., Fish,
R., and Williamson, P. R. (2018). A taxonomy has
been developed for outcomes in medical research to
help improve knowledge discovery. Journal of Clini-
cal Epidemiology, 96:84–92.
El Hassouni, A., Hoogendoorn, M., Ciharova, M., Kleiboer,
A., Amarti, K., Muhonen, V., Riper, H., and Eiben,
A. E. (2022). pH-RL: A Personalization Architec-
ture to Bring Reinforcement Learning to Health Prac-
tice. In Nicosia, G., Ojha, V., La Malfa, E., La Malfa,
G., Jansen, G., Pardalos, P. M., Giuffrida, G., and
Umeton, R., editors, Machine Learning, Optimiza-
tion, and Data Science, volume 13163, pages 265–
280. Springer International Publishing, Cham. Series
Title: Lecture Notes in Computer Science.
Etminani, K., G
¨
oransson, C., Galozy, A., Norell Pejner,
M., and Nowaczyk, S. (2021). Improving Medica-
tion Adherence Through Adaptive Digital Interven-
tions (iMedA) in Patients With Hypertension: Proto-
col for an Interrupted Time Series Study. JMIR Re-
search Protocols, 10(5):e24494.
European Union (2015). Council conclusions on person-
alised medicine for patients. Official Journal of the
European Union, (C 421).
Figueroa, C. A., Deliu, N., Chakraborty, B., Modiri, A., Xu,
J., Aggarwal, J., Jay Williams, J., Lyles, C., and Aguil-
era, A. (2022). Daily Motivational Text Messages to
Promote Physical Activity in University Students: Re-
sults From a Microrandomized Trial. Annals of Be-
havioral Medicine, 56(2):212–218.
Figueroa, C. A., Hernandez-Ramos, R., Boone, C. E.,
G
´
omez-Pathak, L., Yip, V., Luo, T., Sierra, V., Xu,
J., Chakraborty, B., Darrow, S., and Aguilera, A.
(2021). A Text Messaging Intervention for Cop-
ing With Social Distancing During COVID-19 (Stay-
Well at Home): Protocol for a Randomized Controlled
Trial. JMIR Research Protocols, 10(1):e23592.
Forman, E. M., Kerrigan, S. G., Butryn, M. L., Juarascio,
A. S., Manasse, S. M., Onta
˜
n
´
on, S., Dallal, D. H.,
Crochiere, R. J., and Moskow, D. (2019). Can the ar-
tificial intelligence technique of reinforcement learn-
ing use continuously-monitored digital data to opti-
mize treatment for weight loss? Journal of Behavioral
Medicine, 42(2):276–290.
F
¨
urstenau, D., Gersch, M., and Schreiter, S. (2023). Digital
Therapeutics (DTx). Business & Information Systems
Engineering.
Gasparetti, F., Aiello, L. M., and Quercia, D. (2020).
Personalized weight loss strategies by mining activ-
ity tracker data. User Modeling and User-Adapted
Interaction, 30(3):447–476. Number: 3 Publisher:
Springer.
Gonul, S., Namli, T., Baskaya, M., Sinaci, A. A., Cosar,
A., and Toroslu, I. H. (2018). Optimization of Just-
in-Time Adaptive Interventions Using Reinforcement
Learning. In Mouhoub, M., Sadaoui, S., Ait Mo-
hamed, O., and Ali, M., editors, Recent Trends and
Future Technology in Applied Intelligence, volume
10868, pages 334–341. Springer International Pub-
lishing, Cham. Series Title: Lecture Notes in Com-
puter Science.
Gray, R. C., Villareale, J., Fox, T. B., Dallal, D. H., On-
tanon, S., Arigo, D., Jabbari, S., and Zhu, J. (2023).
Improving Fairness in Adaptive Social Exergames via
Shapley Bandits. In Proceedings of the 28th Inter-
national Conference on Intelligent User Interfaces,
pages 322–336, Sydney NSW Australia. ACM.
Hong, J. S., Wasden, C., and Han, D. H. (2021). Introduc-
tion of digital therapeutics. Computer Methods and
Programs in Biomedicine, 209:106319.
Hu, X., Qian, M., Cheng, B., and Cheung, Y. K. (2021). Per-
sonalized Policy Learning Using Longitudinal Mobile
Health Data. Journal of the American Statistical As-
sociation, 116(533):410–420.
Janiesch, C., Zschech, P., and Heinrich, K. (2021). Machine
learning and deep learning. Electronic Markets.
Kaelbling, L. P., Littman, M. L., and Moore, A. W. (1996).
Reinforcement Learning: A Survey. Journal of Artifi-
cial Intelligence Research, 4:237–285.
Kankanhalli, A., Xia, Q., Ai, P., and Zhao, X. (2021).
Understanding Personalization for Health Behavior
Change Applications: A Review and Future Direc-
tions. AIS Transactions on Human-Computer Inter-
action, pages 316–349.
Khalid, N., Qayyum, A., Bilal, M., Al-Fuqaha, A., and
Qadir, J. (2023). Privacy-preserving artificial intel-
ligence in healthcare: Techniques and applications.
Computers in Biology and Medicine, 158:106848.
Kinsey, S., Wolf, J., Saligram, N., Ramesan, V., Walavalkar,
M., Jaswal, N., Ramalingam, S., Sinha, A., and
Nguyen, T. (2023). Building a Personalized Mes-
Unleashing the Potential of Reinforcement Learning for Personalizing Behavioral Transformations with Digital Therapeutics: A Systematic
Literature Review
243