
Information & Knowledge Management, CIKM ’22,
page 315–324, New York, NY, USA. Association for
Computing Machinery.
Doshi-Velez, F. and Kim, B. (2017). Towards A Rig-
orous Science of Interpretable Machine Learning.
arXiv:1702.08608 [cs, stat].
Jacobs, A. S., Beltiukov, R., Willinger, W., Ferreira, R. A.,
Gupta, A., and Granville, L. Z. (2022). AI/ML for
Network Security: The Emperor has no Clothes. In
Proceedings of the 2022 ACM SIGSAC Conference
on Computer and Communications Security, pages
1537–1551, Los Angeles CA USA. ACM.
Jin, W., Fan, J., Gromala, D., Pasquier, P., and Hamarneh,
G. (2023). Invisible Users: Uncovering End-Users’
Requirements for Explainable AI via Explanation
Forms and Goals. arXiv:2302.06609 [cs].
Kim, B., Khanna, R., and Koyejo, O. O. (2016). Exam-
ples are not enough, learn to criticize! Criticism for
Interpretability. In Lee, D., Sugiyama, M., Luxburg,
U., Guyon, I., and Garnett, R., editors, Advances in
Neural Information Processing Systems, volume 29.
Curran Associates, Inc.
Krishna, S., Han, T., Gu, A., Pombra, J., Jabbari, S., Wu, S.,
and Lakkaraju, H. (2022). The Disagreement Problem
in Explainable Machine Learning: A Practitioner’s
Perspective. arXiv:2202.01602 [cs].
Kuppa, A. and Le-Khac, N.-A. (2021). Adversarial xai
methods in cybersecurity. IEEE transactions on in-
formation forensics and security, 16:4924–4938.
Lundberg, S. and Lee, S.-I. (2017). A Unified Approach
to Interpreting Model Predictions. arXiv:1705.07874
[cs, stat].
Molnar, C. (2022). Interpretable Machine Learning.
Christoph Molnar, 2 edition.
Mothilal, R. K., Mahajan, D., Tan, C., and Sharma, A.
(2021). Towards Unifying Feature Attribution and
Counterfactual Explanations: Different Means to the
Same End. In Proceedings of the 2021 AAAI/ACM
Conference on AI, Ethics, and Society, pages 652–
663. arXiv:2011.04917 [cs].
Nadeem, A., Vos, D., Cao, C., Pajola, L., Dieck, S., Baum-
gartner, R., and Verwer, S. (2022). SoK: Explain-
able Machine Learning for Computer Security Appli-
cations. arXiv:2208.10605 [cs].
Nguyen, H. D., Do, N. V., Tran, N. P., Pham, X. H., Pham,
V. T., and Minutolo, A. (2020). Some criteria of the
knowledge representation method for an intelligent
problem solver in stem education. Appl. Comp. Intell.
Soft Comput., 2020.
Parmar, M. (2021). Xaisec-explainable ai security: An early
discussion paper on new multidisciplinary subfield in
pursuit of building trust in security of ai systems.
Petsiuk, V., Das, A., and Saenko, K. (2018). Rise: Ran-
domized input sampling for explanation of black-box
models.
Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). ”Why
Should I Trust You?”: Explaining the Predictions of
Any Classifier. arXiv:1602.04938 [cs, stat].
Ribeiro, M. T., Singh, S., and Guestrin, C. (2018). An-
chors: High-Precision Model-Agnostic Explanations.
Proceedings of the AAAI Conference on Artificial In-
telligence, 32(1). Number: 1.
Sacher, D. (2020). Fingerpointing False Positives: How to
Better Integrate Continuous Improvement into Secu-
rity Monitoring. Digital Threats: Research and Prac-
tice, 1(1):1–7.
Sarker, I. H. (2021). Machine Learning: Algorithms, Real-
World Applications and Research Directions. SN
Computer Science, 2(3):160.
Schwalbe, G. and Finzel, B. (2023). A Comprehen-
sive Taxonomy for Explainable Artificial Intelligence:
A Systematic Survey of Surveys on Methods and
Concepts. Data Mining and Knowledge Discovery.
arXiv:2105.07190 [cs].
Sokol, K. and Flach, P. (2020). Explainability fact sheets: A
framework for systematic assessment of explainable
approaches. In Proceedings of the 2020 Conference
on Fairness, Accountability, and Transparency, FAT*
’20, page 56–67, New York, NY, USA. Association
for Computing Machinery.
Stratosphere (2015). Stratosphere laboratory datasets.
Retrieved March 13, 2020, from https://www.
stratosphereips.org/datasets-overview.
Teso, S. and Kersting, K. (2019). Explanatory interac-
tive machine learning. In Proceedings of the 2019
AAAI/ACM Conference on AI, Ethics, and Society,
AIES ’19, page 239–245, New York, NY, USA. As-
sociation for Computing Machinery.
van der Waa, J., Nieuwburg, E., Cremers, A., and Neer-
incx, M. (2021). Evaluating XAI: A comparison of
rule-based and example-based explanations. Artificial
Intelligence, 291:103404.
Vigano, L. and Magazzeni, D. (2020). Explainable Secu-
rity. In 2020 IEEE European Symposium on Secu-
rity and Privacy Workshops (EuroS&PW), pages 293–
300, Genoa, Italy. IEEE.
Wachter, S., Mittelstadt, B., and Russell, C. (2017). Coun-
terfactual Explanations Without Opening the Black
Box: Automated Decisions and the GDPR. SSRN
Electronic Journal.
Warnecke, A., Arp, D., Wressnegger, C., and Rieck, K.
(2020). Evaluating Explanation Methods for Deep
Learning in Security. In 2020 IEEE European Sympo-
sium on Security and Privacy (EuroS&P), pages 158–
174.
Weber, L., Lapuschkin, S., Binder, A., and Samek, W.
(2023). Beyond explaining: Opportunities and chal-
lenges of xai-based model improvement. Information
Fusion, 92:154–176.
Yan, A., Huang, T., Ke, L., Liu, X., Chen, Q., and Dong, C.
(2023). Explanation leaks: Explanation-guided model
extraction attacks. Information Sciences, 632:269–
284.
Yeh, C.-K., Hsieh, C.-Y., Suggala, A. S., Inouye, D. I., and
Ravikumar, P. (2019). On the (In)fidelity and Sensi-
tivity for Explanations. arXiv:1901.09392 [cs, stat].
Bridging the Explanation Gap in AI Security: A Task-Driven Approach to XAI Methods Evaluation
1377