https://anonymous.4open.science/r/TreeEvolver-
C005/README.md.
Applegate, D. L., Bixby, R. E., Chv
´
atal, V., Cook, W.,
Espinoza, D. G., Goycoolea, M., and Helsgaun, K.
(2009). Certification of an optimal tsp tour through
85,900 cities. Operations Research Letters, 37(1):11–
15.
Banzhaf, W., Nordin, P., Keller, R., and Francone, F. (1998).
Genetic Programming: An Introduction on the Auto-
matic Evolution of computer programs and its Appli-
cations.
Bartz-Beielstein, T., Doerr, C., Berg, D. v. d., Bossek,
J., Chandrasekaran, S., Eftimov, T., Fischbach, A.,
Kerschke, P., La Cava, W., Lopez-Ibanez, M., et al.
(2020). Benchmarking in optimization: Best practice
and open issues. arXiv preprint arXiv:2007.03488.
Bezdek, J. C., Boggavarapu, S., Hall, L. O., and Bensaid,
A. (1994). Genetic algorithm guided clustering. In
Proceedings of the First IEEE Conference on Evolu-
tionary Computation. IEEE World Congress on Com-
putational Intelligence, pages 34–39. IEEE.
Dahmani, R., Boogmans, S., Meijs, A., and Van den Berg,
D. (2020). Paintings-from-polygons: Simulated an-
nealing. In International Conference on Computa-
tional Creativity (ICCC’20).
De Falco, I., Tarantino, E., Cioppa, A. D., and Fontanella, F.
(2006). An innovative approach to genetic program-
ming—based clustering. In Applied Soft Computing
Technologies: The Challenge of Complexity, pages
55–64. Springer.
de Jonge, M. and van den Berg, D. (2020). Parameter Sen-
sitivity Patterns in the Plant Propagation Algorithm.
Number April 2020. IJCCI 2020: Proceedings of the
12th International Joint Conference on Computational
Intelligence.
De Jonge, M. and Van den Berg, D. (2020). Plant Propaga-
tion Parameterization : Offspring & Population Size.
volume 2, pages 1–4. Evo* LBA’s 2020, Springer.
Digalakis, J. G. and Margaritis, K. G. (2001). On bench-
marking functions for genetic algorithms. Interna-
tional journal of computer mathematics, 77(4):481–
506.
Dijkzeul, D., Brouwer, N., Pijning, I., Koppenhol, L., and
van den Berg, D. (2022). Painting with evolutionary
algorithms. In International Conference on Compu-
tational Intelligence in Music, Sound, Art and Design
(Part of EvoStar), pages 52–67. Springer.
Eiben, A. E., Smith, J. E., et al. (2003). Introduction to
evolutionary computing, volume 53. Springer.
Espejo, P. G., Ventura, S., and Herrera, F. (2009). A
survey on the application of genetic programming to
classification. IEEE Transactions on Systems, Man,
and Cybernetics, Part C (Applications and Reviews),
40(2):121–144.
Fischer, T., St
¨
utzle, T., Hoos, H., and Merz, P. (2005). An
analysis of the hardness of tsp instances for two high
performance algorithms. In Proceedings of the Sixth
Metaheuristics International Conference, pages 361–
367.
Fodorean, D., Idoumghar, L., N’diaye, A., Bouquain, D.,
and Miraoui, A. (2012). Simulated annealing algo-
rithm for the optimisation of an electrical machine.
IET electric power applications, 6(9):735–742.
Fraga, E. S. (2019). An example of multi-objective opti-
mization for dynamic processes. Chemical Engineer-
ing Transactions, 74:601–606.
Geleijn, R., van der Meer, M., van der Post, Q., van den
Berg, D., et al. (2019). The plant propagation al-
gorithm on timetables: First results. EVO* LBA’s,
page 2.
Haddadi, S. (2020). Plant propagation algorithm for nurse
rostering. International Journal of Innovative Com-
puting and Applications, 11(4):204–215.
Jie, L., Xinbo, G., and Li-Cheng, J. (2004). A csa-based
clustering algorithm for large data sets with mixed nu-
meric and categorical values. In Fifth World Congress
on Intelligent Control and Automation (IEEE Cat. No.
04EX788), volume 3, pages 2303–2307. IEEE.
Joshi, M., Gyanchandani, M., and Wadhvani, R. (2021).
Analysis of genetic algorithm, particle swarm opti-
mization and simulated annealing on benchmark func-
tions. In 2021 5th International Conference on Com-
puting Methodologies and Communication (ICCMC),
pages 1152–1157. IEEE.
Koppenhol, L., Brouwer, N., Dijkzeul, D., Pijning, I.,
Sleegers, J., and Van Den Berg, D. (2022). Exactly
characterizable parameter settings in a crossoverless
evolutionary algorithm. In Proceedings of the Genetic
and Evolutionary Computation Conference Compan-
ion, pages 1640–1649.
Kordon, A. K. (2010). Applying Computational Intelligence
How to Create Value. Springer.
Koza, J. R. (1992). Genetic Programming: On the Pro-
gramming of Computers by Means of Natural Selec-
tion. MIT Press, Cambridge, MA, USA.
Koza, J. R. (1994). Genetic programming as a means for
programming computers by natural selection. Statis-
tics and computing, 4(2):87–112.
Koza, J. R. (2008). Human-competitive machine invention
by means of genetic programming. Artificial Intel-
ligence for Engineering Design, Analysis and Manu-
facturing, 22(3):185–193.
Koza, J. R. and Rice, J. P. (1992). Automatic programming
of robots using genetic programming. In Proceedings
of the Tenth National Conference on Artificial Intelli-
gence, AAAI’92, page 194–201. AAAI Press.
Laguna, M. and Marti, R. (2005). Experimental testing of
advanced scatter search designs for global optimiza-
tion of multimodal functions. Journal of Global Opti-
mization, 33(2):235–255.
Lam, B. and Ciesielski, V. (2004). Discovery of human-
competitive image texture feature extraction programs
using genetic programming. In Deb, K., Poli, R.,
Banzhaf, W., Beyer, H.-G., Burke, E., Darwen, P.,
Dasgupta, D., Floreano, D., Foster, J., Harman, M.,
Holland, O., Lanzi, P. L., Spector, L., Tettamanzi,
A., Thierens, D., and Tyrrell, A., editors, Genetic
and Evolutionary Computation – GECCO-2004, Part
Making Hard(er) Benchmark Functions: Genetic Programming
577