the 2018 1st International Conference on Mathemat-
ics and Statistics, pages 16–22.
Cheng, Z., Sun, H., Takeuchi, M., and Katto, J. (2018).
Deep convolutional autoencoder-based lossy image
compression. In 2018 Picture Coding Symposium
(PCS), pages 253–257. IEEE.
Cheng, Z., Sun, H., Takeuchi, M., and Katto, J. (2019).
Deep residual learning for image compression. In
CVPR Workshops, page 0.
Christopoulos, C., Skodras, A., and Ebrahimi, T. (2000).
The jpeg2000 still image coding system: an
overview. IEEE transactions on consumer electron-
ics, 46(4):1103–1127.
Huffman, D. A. (1952). A method for the construction of
minimum-redundancy codes. Proceedings of the IRE,
40(9):1098–1101.
Kahu, S. and Rahate, R. (2013). Image compression
using singular value decomposition. International
Journal of Advancements in Research & Technology,
2(8):244–248.
Kodak (1999). Kodak lossless true color image suite. Last
accessed on 2023-11-14.
Li, M., Zuo, W., Gu, S., Zhao, D., and Zhang, D.
(2018). Learning convolutional networks for content-
weighted image compression. In Proceedings of
the IEEE conference on computer vision and pattern
recognition, pages 3214–3223.
Lim, S. T. and Abd Manap, N. B. (2022). A region-based
compression technique for medical image compres-
sion using principal component analysis (pca). Inter-
national Journal of Advanced Computer Science and
Applications, 13(2).
Lim, S. T., Yap, D. F., and Manap, N. (2014). A gui sys-
tem for region-based image compression using princi-
pal component analysis. In 2014 International Con-
ference on Computational Science and Technology
(ICCST), pages 1–4. IEEE.
Marti, U.-V. and Bunke, H. (2002). The iam-database:
an english sentence database for offline handwrit-
ing recognition. International Journal on Document
Analysis and Recognition, 5:39–46.
Pham, D.-L., Chang, T.-W., et al. (2023). A yolo-based
real-time packaging defect detection system. Procedia
Computer Science, 217:886–894.
Prakash, A., Moran, N., Garber, S., DiLillo, A., and Storer,
J. (2017). Semantic perceptual image compression us-
ing deep convolution networks. In 2017 Data Com-
pression Conference (DCC), pages 250–259. IEEE.
Prasantha, H., Shashidhara, H., and Murthy, K. B. (2007).
Image compression using svd. In International con-
ference on computational intelligence and multimedia
applications (ICCIMA 2007), volume 3, pages 143–
145. IEEE.
Ranade, A., Mahabalarao, S. S., and Kale, S. (2007). A
variation on svd based image compression. Image and
Vision computing, 25(6):771–777.
Sadek, R. A. (2012). SVD based image processing appli-
cations: State of the art, contributions and research
challenges. CoRR, abs/1211.7102.
Tian, M., Luo, S.-W., and Liao, L.-Z. (2005). An inves-
tigation into using singular value decomposition as a
method of image compression. In 2005 International
Conference on Machine Learning and Cybernetics,
volume 8, pages 5200–5204. IEEE.
Toderici, G., Shi, W., Timofte, R., Theis, L., Balle, J.,
Agustsson, E., Johnston, N., and Mentzer, F. (2020).
Workshop and challenge on learned image compres-
sion (clic2020). Last accessed on 2023-11-14.
Toderici, G., Vincent, D., Johnston, N., Jin Hwang, S.,
Minnen, D., Shor, J., and Covell, M. (2017). Full
resolution image compression with recurrent neural
networks. In Proceedings of the IEEE conference
on Computer Vision and Pattern Recognition, pages
5306–5314.
Wallace, G. K. (1991). The jpeg still picture compression
standard. Communications of the ACM, 34(4):30–44.
Wang, Z., Bovik, A. C., Sheikh, H. R., and Simoncelli, E. P.
(2004). Image quality assessment: from error visi-
bility to structural similarity. IEEE transactions on
image processing, 13(4):600–612.
PatchSVD: A Non-Uniform SVD-Based Image Compression Algorithm
893