approach, however, is not without challenges. The
scarcity of standardized and comprehensive ESG
data, the complexity of AI models, and regulatory
compliance issues pose significant barriers. Despite
these challenges, AI can enhance the analysis and
assessment of sustainability factors and improve the
accuracy of default risk estimations by processing
large data volumes and identifying patterns in
complex information. AI offers a way to better
understand and integrate these aspects into financial
risk management, but its effective implementation
requires the courage of banks to use these systems.
Further research should focus on developing and
validating AI models aimed at accounting for
sustainability risks and assessing their impact on
creditworthiness. Efforts to standardize ESG data for
reliable comparability and thereby strengthen
confidence in risk assessment are also necessary.
Moreover, investigations into improving the
explainability and transparency of AI applications in
banks for credit granting decisions should be the
subject of further research activities.
REFERENCES
Arostegi, M., Torre‐Bastida, A., Bilbao, M. N., & Del Ser,
J. (2018). A heuristic approach to the multicriteria
design of IaaS cloud infrastructures for Big Data
applications. Expert Systems, 35(5), Article e12259.
BaFin (2020). Merkblatt zum Umgang mit Nachhaltig-
keitsrisiken, 2020. https://www.bafin.de/SharedDocs/
Downloads/DE/Merkblatt/dl_mb_Nachhaltigkeitsrisik
en.pdf;jsessionid=E2FE3115144C8D0270ED0167BC
4ED2AF.internet941?__blob=publicationFile&v=2
Bartolacci, F., Caputo, A., & Soverchia, M. (2020).
Sustainability and financial performance of small and
medium sized enterprises: A bibliometric and
systematic literature review. Business Strategy and the
Environment, 29(3), 1297–1309.
Bauer, R., & Hann, D. (2010). Corporate Environmental
Management and Credit Risk. SSRN Electronic Journal.
Advance online publication.
Berg, F., Kö, lbel, J., & Rigobon, R. (2019).
Aggregate Confusion: The Divergence of ESG Ratings.
SSRN Electronic Journal. Advance online publication.
Berns, M. (2020). How mature is AI adoption in financial
services? https://www.pwc.de/de/future-of-finance/
how-mature-is-ai-adoption-in-financial-services.pdf
Cammalleri, C., Naumann, G., Mentaschi, L., & Formetta
(2020). Global warming and drought impacts in the EU.
https://joint-research-centre.ec.europa.eu/system/files/
2020-05/pesetaiv_task_7_drought_final_report.pdf
Daase, C., & Turowski, K. (2023). Conducting Design
Science Research in Society 5.0 – Proposal of an
Explainable Artificial Intelligence Research
Methodology. In A. Gerber & R. Baskerville (Eds.),
Lecture Notes in Computer Science. Design Science
Research for a New Society: Society 5.0 (Vol. 13873,
pp. 250–265). Springer Nature Switzerland.
Dagianis, K., Hecker, F., & Arbib, S. (2023). Einblicke zur
Künstlichen Intelligenz im deutschen Finanzsektor.
https://www.pwc.de/de/content/a57625e7-4f1e-4cda-a
79e-428db2c9ac24/pwc-studie-ki-im-deutschen-finanz
sektor.pdf
Dai, L., Gao, X., Guo, Y., Xiao, J., & Zhang, Z. (2012).
Bioinformatics clouds for big data manipulation.
Biology Direct, 7, 43; discussion 43.
Dastin, J. (2018, October 10). Amazon ditches AI recruiting
tool that didn’t like women. Global News. https://global
news.ca/news/4532172/amazon-jobs-ai-bias/#:~:text=
Amazon%20has%20scrapped%20an%20AI,machine
%20favoured%20men%20over%20women
Deutsche Bank. (2023, November 13). Wie Künstliche
Intelligenz das Bankgeschäft verändert. https://www.
db.com/what-next/digital-disruption/better-than-huma
ns/how-artificial-intelligence-is-changing-banking/ind
ex?language_id=3
Dimson, E., Marsh, P., & Staunton, M. (2020). Divergent
ESG Ratings. The Journal of Portfolio Management,
47
(1), 75–87.
Drempetic, S., Klein, C., & Zwergel, B. (2020). The
Influence of Firm Size on the ESG Score: Corporate
Sustainability Ratings Under Review. Journal of
Business Ethics, 167(2), 333–360.
European Central Bank. (2020). Guide on climate-related
and environmental risks. https://www.bankingsuper
vision.europa.eu/ecb/pub/pdf/ssm.202011finalguideon
climate-relatedandenvironmentalrisks~58213f6564.en.
pdf
Friedrich, L., Hiese, A., Dreßler, R., & Wolfenstetter, F.
(2021). Künstliche Intelligenz in Banken – Status quo,
Herausforderungen und Anwendungspotenziale. In P.
Buxmann & H. Schmidt (Eds.), Künstliche Intelligenz
(pp. 49–63). Springer Berlin Heidelberg.
Geng, C. (2023). Accounting for AI risk in ESG investing –
It’s a black box. https://www.bnpparibas-am.com/en-
us/forward-thinking/accounting-for-ai-risk-in-esg-
investing-its-a-black-box/
Gleißner, W., & Romeike, F. (2021). ESG-Risiken und ihre
Quantifizierung. In O. Everling (Ed.), Social credit
rating: Reputation und vertrauen beurteilen (1st ed., pp.
391–433). Springer Nature.
Gupta, A., Sharma, U., & Gupta, S. K. (2021). The Role of
ESG in Sustainable Development: An Analysis
Through the Lens of Machine Learning. In 2021 IEEE
International Humanitarian Technology Conference
(IHTC) (pp. 1–5). IEEE.
Hammann, E.‑M., Habisch, A., & Pechlaner, H. (2009).
Values that create value: socially responsible business
practices in SMEs – empirical evidence from German
companies. Business Ethics: A European Review, 18(1),
37–51.
Herrera Madueño, J., Larrán Jorge, M., Martínez Conesa, I.,
& Martínez-Martínez, D. (2016). Relationship between
corporate social responsibility and competitive
performance in Spanish SMEs: Empirical evidence
Applications of Artificial Intelligence in Sustainability Assessment and Risk Management in European Banking