the advantage of requiring a significantly less com-
plex implementation setup. Indeed, while traditional
methods required extensive work for model defini-
tion, training, hyperparameter optimization, etc., the
ChatGPT Prompt Engineering approach required an
adequate prompt definition, which reduced the imple-
mentation time from months to days.
ACKNOWLEDGEMENTS
This work was partly funded by FAPERJ under
grant E-26/202.818/2017; by CAPES under grants
88881.310592-2018/01, 88881.134081/2016-01, and
88882.164913/2010-01; and by CNPq under grant
302303/2017-0.
REFERENCES
Arora, S., Liang, Y., and Ma, T. (2017). A simple but tough-
to-beat baseline for sentence embeddings. In Interna-
tional conference on learning representations.
De Araujo, P. H. L., de Campos, T. E., Braz, F. A., and
da Silva, N. C. (2020). Victor: a dataset for brazil-
ian legal documents classification. In Proceedings of
the 12th Language Resources and Evaluation Confer-
ence, pages 1449–1458.
Dong, Q., Li, L., Dai, D., Zheng, C., Wu, Z., Chang, B.,
Sun, X., Xu, J., and Sui, Z. (2022). A survey for in-
context learning. arXiv preprint arXiv:2301.00234.
Fernandes, W. P. D., Frajhof, I. Z., Rodrigues, A. M. B.,
Barbosa, S. D. J., Konder, C. N., Nasser, R. B., de Car-
valho, G. R., Lopes, H. C. V., et al. (2022). Extracting
value from brazilian court decisions. Information Sys-
tems, 106:101965.
Fernandes, W. P. D., Silva, L. J. S., Frajhof, I. Z.,
de Almeida, G. d. F. C. F., Konder, C. N., Nasser,
R. B., de Carvalho, G. R., Barbosa, S. D. J., Lopes,
H. C. V., et al. (2020). Appellate court modifications
extraction for portuguese. Artificial Intelligence and
Law, 28(3):327–360.
Jones, K. S. (1972). A statistical interpretation of term
specificity and its application in retrieval. Journal of
documentation.
Kowsari, K., Jafari Meimandi, K., Heidarysafa, M., Mendu,
S., Barnes, L., and Brown, D. (2019). Text classifica-
tion algorithms: A survey. Information, 10(4):150.
Le, Q. and Mikolov, T. (2014). Distributed representations
of sentences and documents. In International confer-
ence on machine learning, pages 1188–1196. PMLR.
Leitner, E., Rehm, G., and Moreno-Schneider, J. (2019).
Fine-grained named entity recognition in legal docu-
ments. In International Conference on Semantic Sys-
tems, pages 272–287. Springer.
Minaee, S., Kalchbrenner, N., Cambria, E., Nikzad, N.,
Chenaghlu, M., and Gao, J. (2021). Deep learning–
based text classification: a comprehensive review.
ACM Computing Surveys (CSUR), 54(3):1–40.
Radford, A., Narasimhan, K., Salimans, T., Sutskever, I.,
et al. (2018). Improving language understanding by
generative pre-training.
Snoek, J., Larochelle, H., and Adams, R. P. (2012). Practi-
cal bayesian optimization of machine learning algo-
rithms. Advances in neural information processing
systems, 25.
Souza, F., Nogueira, R., and Lotufo, R. (2019). Por-
tuguese named entity recognition using bert-crf. arXiv
preprint arXiv:1909.10649.
Sulea, O.-M., Zampieri, M., Malmasi, S., Vela, M., Dinu,
L. P., and Van Genabith, J. (2017). Exploring the
use of text classification in the legal domain. arXiv
preprint arXiv:1710.09306.
Surden, H. (2018). Artificial intelligence and law: An
overview. Ga. St. UL Rev., 35:1305.
Xiao, C., Zhong, H., Guo, Z., Tu, C., Liu, Z., Sun, M.,
Zhang, T., Han, X., Hu, Z., Wang, H., et al. (2019).
Cail2019-scm: A dataset of similar case matching in
legal domain. arXiv preprint arXiv:1911.08962.
Yao, S., Zhao, J., Yu, D., Du, N., Shafran, I., Narasimhan,
K., and Cao, Y. (2022). React: Synergizing reason-
ing and acting in language models. arXiv preprint
arXiv:2210.03629.
Zhong, H., Guo, Z., Tu, C., Xiao, C., Liu, Z., and Sun,
M. (2018). Legal judgment prediction via topological
learning. In Proceedings of the 2018 Conference on
Empirical Methods in Natural Language Processing,
pages 3540–3549.
Zhou, C., Sun, C., Liu, Z., and Lau, F. (2015). A c-lstm
neural network for text classification. arXiv preprint
arXiv:1511.08630.
Zhou, Y., Muresanu, A. I., Han, Z., Paster, K., Pitis, S.,
Chan, H., and Ba, J. (2022). Large language mod-
els are human-level prompt engineers. arXiv preprint
arXiv:2211.01910.
ICEIS 2024 - 26th International Conference on Enterprise Information Systems
586