REFERENCES
Al-Ezzi, A., Kamel, N., Faye, I., and Ebenezer, E. G. M.
(2020). Eeg frontal theta-beta ratio and frontal mid-
line theta for the assessment of social anxiety disorder.
In 2020 10th IEEE International Conference on Con-
trol System, Computing and Engineering (ICCSCE),
pages 107–112. IEEE.
Association, W. M. et al. (2013). Declaration of
helsinki, ethical principles for scientific requirements
and research protocols. Bull World Health Organ,
79(4):373.
Bequet, A. J., Hidalgo-Munoz, A. R., Moreau, F., Quick, J.,
and Jallais, C. (2022). Subtle interactions for distress
regulation: Efficiency of a haptic wearable accord-
ing to personality. International Journal of Human-
Computer Studies, 168:102923.
Bienvenu, O. J. and Brandes, M. (2005). The interface of
personality traits and anxiety disorders. Primary Psy-
chiatry.
Butt, A. R., Arsalan, A., and Majid, M. (2020). Multimodal
personality trait recognition using wearable sensors in
response to public speaking. IEEE Sensors Journal,
20(12):6532–6541.
Chang, J. and Choi, Y. (2023). Depression diagnosis based
on electroencephalography power ratios. Brain and
Behavior, 13(8):e3173.
Elgendi, M., Galli, V., Ahmadizadeh, C., and Menon, C.
(2022). Dataset of psychological scales and physio-
logical signals collected for anxiety assessment using
a portable device. Data, 7(9):132.
Gavrilescu, M. and Vizireanu, N. (2019). Predicting depres-
sion, anxiety, and stress levels from videos using the
facial action coding system. Sensors, 19(17):3693.
Greco, C., Matarazzo, O., Cordasco, G., Vinciarelli, A.,
Callejas, Z., and Esposito, A. (2021). Discrimina-
tive power of eeg-based biomarkers in major depres-
sive disorder: A systematic review. IEEE Access,
9:112850–112870.
Harris, L. A. and Dollinger, S. M. C. (2003). Individual dif-
ferences in personality traits and anxiety about aging.
Personality and Individual Differences, 34(2):187–
194.
He, C., Chen, Y.-Y., Phang, C.-R., Stevenson, C., Chen,
I.-P., Jung, T.-P., and Ko, L.-W. (2023). Diversity and
suitability of the state-of-the-art wearable and wireless
eeg systems review. IEEE Journal of Biomedical and
Health Informatics.
Kotov, R., Watson, D., Robles, J. P., and Schmidt, N. B.
(2007). Personality traits and anxiety symptoms: The
multilevel trait predictor model. Behaviour research
and therapy, 45(7):1485–1503.
Li, M., Zhang, W., Hu, B., Kang, J., Wang, Y., and Lu,
S. (2023). Automatic assessment of depression and
anxiety through encoding pupil-wave from hci in vr
scenes. ACM Transactions on Multimedia Computing,
Communications and Applications, 20(2):1–22.
McCrae, R. R. and John, O. P. (1992). An introduction to
the five-factor model and its applications. Journal of
personality, 60(2):175–215.
Mokhtari, R., Ajorpaz, N. M., Golitaleb, M., et al. (2023).
The effects of rosa damascene aromatherapy on anxi-
ety and sleep quality in burn patients: A randomized
clinical trial. Burns, 49(4):973–979.
Moon, S.-E. and Lee, J.-S. (2015a). Eeg connectivity analy-
sis in perception of tone-mapped high dynamic range
videos. In Proceedings of the 23rd ACM international
conference on Multimedia, pages 987–990.
Moon, S.-E. and Lee, J.-S. (2015b). Perceptual experience
analysis for tone-mapped hdr videos based on eeg and
peripheral physiological signals. IEEE Transactions
on Autonomous Mental Development, 7(3):236–247.
Muhammad, F. and Al-Ahmadi, S. (2022). Human
state anxiety classification framework using eeg sig-
nals in response to exposure therapy. Plos one,
17(3):e0265679.
Nik
ˇ
cevi
´
c, A. V., Marino, C., Kolubinski, D. C., Leach, D.,
and Spada, M. M. (2021). Modelling the contribution
of the big five personality traits, health anxiety, and
covid-19 psychological distress to generalised anxi-
ety and depressive symptoms during the covid-19 pan-
demic. Journal of affective disorders, 279:578–584.
Olofsson, J. K., Nordin, S., Sequeira, H., and Polich, J.
(2008). Affective picture processing: an integra-
tive review of erp findings. Biological psychology,
77(3):247–265.
Peacock, E. J. and Wong, P. T. (1990). The stress appraisal
measure (sam): A multidimensional approach to cog-
nitive appraisal. Stress medicine, 6(3):227–236.
Poole, K. L., Hassan, R., and Schmidt, L. A. (2021).
Temperamental shyness, frontal eeg theta/beta ratio,
and social anxiety in children. Child Development,
92(5):2006–2019.
Reiche, E. M. V., Nunes, S. O. V., and Morimoto, H. K.
(2004). Stress, depression, the immune system, and
cancer. The lancet oncology, 5(10):617–625.
Riaz, M., Majid, M., and Mir, J. (2021a). Emotion recogni-
tion using electroencephalography in response to high
dynamic range videos. In 2021 International Confer-
ence on Information Technology (ICIT), pages 565–
570. IEEE.
Riaz, M., Majid, M., and Mir, J. (2021b). Emotional
experience analysis in response to hdr and sdr con-
tent. In 2021 13th International Conference on Qual-
ity of Multimedia Experience (QoMEX), pages 121–
124. IEEE.
Riaz, M., Majid, M., and Mir, J. (2023). High dynamic
range multimedia: better affective agent for human
emotional experience. Multimedia Tools and Appli-
cations, pages 1–16.
Saeed, S. M. U., Anwar, S. M., Khalid, H., Majid, M., and
Bagci, U. (2020). Eeg based classification of long-
term stress using psychological labeling. Sensors,
20(7):1886.
ˇ
Salkevicius, J., Dama
ˇ
sevi
ˇ
cius, R., Maskeliunas, R., and
Laukien
˙
e, I. (2019). Anxiety level recognition for
virtual reality therapy system using physiological sig-
nals. Electronics, 8(9):1039.
Scibelli, F., Troncone, A., Likforman-Sulem, L., Vincia-
relli, A., and Esposito, A. (2016). How major depres-
Anxiety and EEG Frontal Theta-Beta Ratio Relationship Analysis Across Personality Traits During HDR Affective Videos Experience
35