
IPCC (2022). Summary for Policymakers, page In Press.
Cambridge University Press, Cambridge, UK. Ed-
itors: P
¨
ortner, H. O. and Roberts, D. C. and Tig-
nor, M. and Poloczanska, E. S. and Mintenbeck, K.
and Alegr
´
ıa, A. and Craig, M. and Langsdorf, S. and
L
¨
oschke, S. and M
¨
oller, V. and Okem, A. and Rama,
B.
Junger, D., Wohlgemuth, V., and Kammer, E. (2022). Con-
ception and test of a measuring station for the anal-
ysis of the resource and energy consumption of ma-
terial flow-oriented environmental management infor-
mation systems (EMIS). In Wohlgemuth, V., Nau-
mann, S., Arndt, H.-K., Behrens, G., and H
¨
ob, M., ed-
itors, EnviroInfo 2022, page 211, Bonn. Gesellschaft
f
¨
ur Informatik e.V.
Kern, E., Hilty, L. M., Guldner, A., Maksimov, Y. V., Filler,
A., Gr
¨
oger, J., and Naumann, S. (2018). Sustain-
able software products—Towards assessment criteria
for resource and energy efficiency. Future Generation
Computer Systems, 86:199–210.
Kumar, A., Chattree, G., and Periyasamy, S. (2018). Smart
healthcare monitoring system. Wireless Personal
Communications, 101:453–463.
Lu, O. H., Huang, A. Y., Huang, J. C., Lin, A. J., Ogata, H.,
and Yang, S. J. (2018). Applying learning analytics
for the early prediction of Students’ academic perfor-
mance in blended learning. Journal of Educational
Technology & Society, 21(2):220–232.
Mancebo, J., Garcia, F., and Calero, C. (2021). A process
for analysing the energy efficiency of software. Infor-
mation and Software Technology, 134:106560.
McNamara, D. S., Allen, L., Crossley, S., Dascalu, M., and
Perret, C. A. (2017). Natural language processing and
learning analytics. Handbook of learning analytics,
93.
Naumann, S., Guldner, A., and Kern, E. (2021). The eco-
label blue angel for software—Development and com-
ponents. In Advances and New Trends in Environ-
mental Informatics: Digital Twins for Sustainability,
pages 79–89. Springer.
Noureddine, A. (2022). PowerJoular and JoularJX: multi-
platform software power monitoring tools. In 2022
18th International Conference on Intelligent Environ-
ments (IE), pages 1–4. IEEE.
Noureddine, A., Bourdon, A., Rouvoy, R., and Seinturier,
L. (2012). A Preliminary Study of the Impact of Soft-
ware Engineering on GreenIT. In 2012 First Interna-
tional Workshop on Green and Sustainable Software
(GREENS), pages 21–27. IEEE.
Paramythis, A. and Loidl-Reisinger, S. (2003). Adaptive
learning environments and e-learning standards. In
Second european conference on e-learning, volume 1,
pages 369–379.
Patterson, D., Gonzalez, J., Le, Q., Liang, C., Munguia, L.-
M., Rothchild, D., So, D., Texier, M., and Dean, J.
(2021). Carbon emissions and large neural network
training.
Romero, C., Romero, J. R., and Ventura, S. (2014). A sur-
vey on pre-processing educational data. Educational
data mining: applications and trends, pages 29–64.
Rzepka, N. (2023). Transforming first language learning
platforms towards adaptivity and fairness: models, in-
terventions and architecture. PhD thesis, Humboldt
Universi
¨
at zu Berlin, Berlin.
Rzepka, N., Simbeck, K., M
¨
uller, H.-G., and Pinkwart, N.
(2022). Keep it up: In-session dropout prediction to
support blended classroom scenarios. In CSEDU (2),
pages 131–138.
Rzepka, N., Simbeck, K., M
¨
uller, H.-G., and Pinkwart, N.
(2023). Go with the Flow: Personalized Task Se-
quencing Improves Online Language Learning. In
International Conference on Artificial Intelligence in
Education, pages 90–101. Springer.
Saha, A. K., Sircar, S., Chatterjee, P., Dutta, S., Mitra, A.,
Chatterjee, A., Chattopadhyay, S. P., and Saha, H. N.
(2018). A raspberry Pi controlled cloud based air and
sound pollution monitoring system with temperature
and humidity sensing. In 2018 IEEE 8th Annual Com-
puting and Communication Workshop and Conference
(CCWC), pages 607–611. IEEE.
Schwartz, R., Dodge, J., Smith, N. A., and Etzioni, O.
(2020). Green AI. Communications of the ACM,
63(12):54–63.
Sharir, O., Peleg, B., and Shoham, Y. (2020). The cost
of training nlp models: A concise overview. arXiv
preprint arXiv:2004.08900.
Stroustrup, B. (2014). Programming: principles and prac-
tice using C++. Pearson Education.
Strubell, E., Ganesh, A., and McCallum, A. (2019). Energy
and policy considerations for deep learning in NLP.
Umarghanis, S. A., Darari, F., and Wibisono, A. (2020).
A Low-Cost IoT Platform for Crowd Density Detec-
tion in Jakarta Commuter Line. In 2020 International
Conference on Advanced Computer Science and In-
formation Systems (ICACSIS), pages 121–128. IEEE.
Vargha, A. and Delaney, H. D. (2000). A critique and im-
provement of the CL common language effect size
statistics of McGraw and Wong. Journal of Educa-
tional and Behavioral Statistics, 25(2):101–132.
Verdecchia, R., Guldner, A., Becker, Y., and Kern, E.
(2018). Code-level energy hotspot localization via
naive spectrum based testing. In Advances and New
Trends in Environmental Informatics: Managing Dis-
ruption, Big Data and Open Science, pages 111–130.
Springer.
Wagner, L., Mayer, M., Marino, A., Nezhad, A. S., Zwaan,
H., and Malavolta, I. (2023). On the Energy Con-
sumption and Performance of WebAssembly Binaries
across Programming Languages and Runtimes in IoT.
In Proceedings of the 9th International Conference on
Evaluation and Assessment on Software Engineering
(EASE).
Wong, B. T. and Li, K. C. (2018). Learning analytics inter-
vention: A review of case studies. In 2018 Interna-
tional Symposium on Educational Technology (ISET),
pages 178–182. IEEE.
Wu, C.-J., Raghavendra, R., Gupta, U., Acun, B., Ardalani,
N., Maeng, K., Chang, G., Aga, F., Huang, J., Bai,
C., et al. (2022). Sustainable ai: Environmental impli-
cations, challenges and opportunities. Proceedings of
Machine Learning and Systems, 4:795–813.
Sustainable Learning Analytics: Measuring and Understanding the Drivers of Energy Consumption of AI in Education
279