Subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics), 12661 LNCS, 536–
545. https://doi.org/10.1007/978-3-030-68763-2_41/
COVER
Galantucci, S., Impedovo, D., & Pirlo, G. (2021). One time
user key: A user-based secret sharing XOR-ed model
for multiple user cryptography in distributed systems.
IEEE Access, 9, 148521–148534. https://doi.
org/10.1109/ACCESS.2021.3124637
Gattulli, V., Impedovo, D., Pirlo, G., & Sarcinella, L.
(2023). Human Activity Recognition for the
Identification of Bullying and Cyberbullying Using
Smartphone Sensors. Electronics 2023, Vol. 12, Page
261, 12(2), 261. https://doi.org/10.3390/
ELECTRONICS12020261
Gattulli, V., Impedovo, D., Pirlo, G., & Semeraro, G.
(2022). Early Dementia Identification: On the Use of
Random Handwriting Strokes. Lecture Notes in
Computer Science (Including Subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in
Bioinformatics), 13424 LNCS, 285–300.
https://doi.org/10.1007/978-3-031-19745-1_21
Gattulli, V., Impedovo, D., Pirlo, G., & Semeraro, G.
(2023). Handwriting Task-Selection based on the
Analysis of Patterns in Classification Results on
Alzheimer Dataset. CEUR Workshop Proceedings,
3521, 18–29.
Ghosh, T., Palash, M. I. A., Yousuf, M. A., Hamid, M. A.,
Monowar, M. M., & Alassafi, M. O. (2023a). A Robust
Distributed Deep Learning Approach to Detect
Alzheimer’s Disease from MRI Images. Mathematics
2023, Vol. 11, Page 2633, 11(12), 2633.
https://doi.org/10.3390/MATH11122633
Ghosh, T., Palash, M. I. A., Yousuf, M. A., Hamid, M. A.,
Monowar, M. M., & Alassafi, M. O. (2023b). A Robust
Distributed Deep Learning Approach to Detect
Alzheimer’s Disease from MRI Images. Mathematics
2023, Vol. 11, Page 2633, 11(12), 2633.
https://doi.org/10.3390/MATH11122633
Han, B., Jhaveri, R. H., Wang, H., Qiao, D., & Du, J.
(2023). Application of Robust Zero-Watermarking
Scheme Based on Federated Learning for Securing the
Healthcare Data. IEEE Journal of Biomedical and
Health Informatics, 27(2), 804–813. https://doi.
org/10.1109/JBHI.2021.3123936
Impedovo, D., Pirlo, G., Sarcinella, L., Stasolla, E., &
Trullo, C. A. (2012). Analysis of stability in static
signatures using cosine similarity. Proceedings -
International Workshop on Frontiers in Handwriting
Recognition, IWFHR, 231–235. https://doi.org/10.
1109/ICFHR.2012.180
Jack, C. R., Bernstein, M. A., Fox, N. C., Thompson, P.,
Alexander, G., Harvey, D., Borowski, B., Britson, P. J.,
Whitwell, J. L., Ward, C., Dale, A. M., Felmlee, J. P.,
Gunter, J. L., Hill, D. L. G., Killiany, R., Schuff, N.,
Fox-Bosetti, S., Lin, C., Studholme, C., … Weiner, M.
W. (2008). The Alzheimer’s Disease Neuroimaging
Initiative (ADNI): MRI methods. Journal of Magnetic
Resonance Imaging : JMRI
, 27(4), 685–691.
https://doi.org/10.1002/JMRI.21049
Kaissis, G., Ziller, A., Passerat-Palmbach, J., Ryffel, T.,
Usynin, D., Trask, A., Lima, I., Mancuso, J., Jungmann,
F., Steinborn, M. M., Saleh, A., Makowski, M.,
Rueckert, D., & Braren, R. (2021). End-to-end privacy
preserving deep learning on multi-institutional medical
imaging. Nature Machine Intelligence 2021 3:6, 3(6),
473–484. https://doi.org/10.1038/s42256-021-00337-8
Khalil, K., Khan Mamun, M. M. R., Sherif, A., Elsersy, M.
S., Imam, A. A. A., Mahmoud, M., & Alsabaan, M.
(2023). A Federated Learning Model Based on
Hardware Acceleration for the Early Detection of
Alzheimer’s Disease. Sensors 2023, Vol. 23, Page
8272, 23(19), 8272. https://doi.org/10.3390/S23198272
Li, Q., He, B., & Song, D. (2021). Model-Contrastive
Federated Learning. 2021 IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR),
10708–10717. https://doi.org/10.1109/CVPR46437.
2021.01057
Li, Q., Wen, Z., Wu, Z., Hu, S., Wang, N., Li, Y., Liu, X.,
& He, B. (2021). A Survey on Federated Learning
Systems: Vision, Hype and Reality for Data Privacy
and Protection. IEEE Transactions on Knowledge and
Data Engineering. https://doi.org/10.1109/TKDE.
2021.3124599
Marcus, D. S., Wang, T. H., Parker, J., Csernansky, J. G.,
Morris, J. C., & Buckner, R. L. (2007). Open Access
Series of Imaging Studies (OASIS): Cross-sectional
MRI Data in Young, Middle Aged, Nondemented, and
Demented Older Adults. Journal of Cognitive
Neuroscience, 19(9), 1498–1507. https://doi.org/10.
1162/JOCN.2007.19.9.1498
Mirzaei, G., & Adeli, H. (2022). Machine learning
techniques for diagnosis of alzheimer disease, mild
cognitive disorder, and other types of dementia.
Biomedical Signal Processing and Control, 72, 103293.
https://doi.org/10.1016/J.BSPC.2021.103293
Mothukuri, V., Parizi, R. M., Pouriyeh, S., Huang, Y.,
Dehghantanha, A., & Srivastava, G. (2021). A survey
on security and privacy of federated learning. Future
Generation Computer Systems, 115, 619–640.
https://doi.org/10.1016/J.FUTURE.2020.10.007
Narmadha, K., & Varalakshmi, P. (2022). Federated
Learning in Healthcare: A Privacy Preserving
Approach. Studies in Health Technology and
Informatics, 294, 194–198. https://doi.org/10.3233/
SHTI220436
Nguyen, T. V., Dakka, M. A., Diakiw, S. M., VerMilyea,
M. D., Perugini, M., Hall, J. M. M., & Perugini, D.
(2022). A novel decentralized federated learning
approach to train on globally distributed, poor quality,
and protected private medical data. Scientific Reports
2022 12:1, 12(1), 1–12. https://doi.org/10.1038/
s41598-022-12833-x
Salehi, A. W., Baglat, P., Sharma, B. B., Gupta, G., &
Upadhya, A. (2020). A CNN Model: Earlier Diagnosis
and Classification of Alzheimer Disease using MRI.
Proceedings - International Conference on Smart
Electronics and Communication, ICOSEC 2020, 156–
161. https://doi.org/10.1109/ICOSEC49089.2020.9215
402