Subseries Lecture Notes in Artificial Intelligence and 
Lecture Notes in Bioinformatics), 12661 LNCS,  536–
545.  https://doi.org/10.1007/978-3-030-68763-2_41/ 
COVER 
Galantucci, S., Impedovo, D., & Pirlo, G. (2021). One time 
user key: A user-based secret  sharing XOR-ed model 
for multiple user cryptography in distributed systems. 
IEEE Access,  9,  148521–148534.  https://doi. 
org/10.1109/ACCESS.2021.3124637 
Gattulli,  V.,  Impedovo,  D.,  Pirlo,  G.,  &  Sarcinella,  L. 
(2023).  Human  Activity  Recognition  for  the 
Identification  of  Bullying  and  Cyberbullying  Using 
Smartphone Sensors. Electronics 2023, Vol. 12, Page 
261,  12(2),  261.  https://doi.org/10.3390/ 
ELECTRONICS12020261 
Gattulli,  V.,  Impedovo,  D.,  Pirlo,  G.,  &  Semeraro,  G. 
(2022).  Early  Dementia  Identification:  On  the  Use  of 
Random  Handwriting  Strokes.  Lecture Notes in 
Computer Science (Including Subseries Lecture Notes 
in Artificial Intelligence and Lecture Notes in 
Bioinformatics),  13424 LNCS,  285–300. 
https://doi.org/10.1007/978-3-031-19745-1_21 
Gattulli,  V.,  Impedovo,  D.,  Pirlo,  G.,  &  Semeraro,  G. 
(2023).  Handwriting  Task-Selection  based  on  the 
Analysis  of  Patterns  in  Classification  Results  on 
Alzheimer  Dataset.  CEUR Workshop Proceedings, 
3521, 18–29. 
Ghosh, T., Palash, M. I. A., Yousuf, M. A., Hamid, M. A., 
Monowar, M. M., & Alassafi, M. O. (2023a). A Robust 
Distributed  Deep  Learning  Approach  to  Detect 
Alzheimer’s Disease from  MRI  Images.  Mathematics 
2023, Vol. 11, Page 2633,  11(12),  2633. 
https://doi.org/10.3390/MATH11122633 
Ghosh, T., Palash, M. I. A., Yousuf, M. A., Hamid, M. A., 
Monowar, M. M., & Alassafi, M. O. (2023b). A Robust 
Distributed  Deep  Learning  Approach  to  Detect 
Alzheimer’s Disease from  MRI  Images.  Mathematics 
2023, Vol. 11, Page 2633,  11(12),  2633. 
https://doi.org/10.3390/MATH11122633 
Han, B., Jhaveri, R. H., Wang, H., Qiao, D., & Du, J. 
(2023).  Application  of  Robust  Zero-Watermarking 
Scheme Based on Federated Learning for Securing the 
Healthcare  Data.  IEEE Journal of Biomedical and 
Health Informatics,  27(2),  804–813.  https://doi. 
org/10.1109/JBHI.2021.3123936 
Impedovo,  D.,  Pirlo,  G.,  Sarcinella,  L.,  Stasolla,  E.,  & 
Trullo,  C.  A.  (2012).  Analysis  of  stability  in  static 
signatures  using  cosine  similarity.  Proceedings - 
International Workshop on Frontiers in Handwriting 
Recognition, IWFHR,  231–235.  https://doi.org/10. 
1109/ICFHR.2012.180 
Jack,  C.  R.,  Bernstein, M. A.,  Fox,  N.  C.,  Thompson, P., 
Alexander, G., Harvey, D., Borowski, B., Britson, P. J., 
Whitwell, J. L., Ward, C., Dale, A. M., Felmlee, J. P., 
Gunter, J. L., Hill,  D. L. G., Killiany,  R., Schuff, N., 
Fox-Bosetti, S., Lin, C., Studholme, C., … Weiner, M. 
W.  (2008).  The  Alzheimer’s  Disease  Neuroimaging 
Initiative (ADNI): MRI methods. Journal of Magnetic 
Resonance Imaging : JMRI
,  27(4),  685–691. 
https://doi.org/10.1002/JMRI.21049 
Kaissis,  G.,  Ziller,  A.,  Passerat-Palmbach,  J.,  Ryffel,  T., 
Usynin, D., Trask, A., Lima, I., Mancuso, J., Jungmann, 
F.,  Steinborn,  M.  M.,  Saleh,  A.,  Makowski,  M., 
Rueckert, D., & Braren, R. (2021). End-to-end privacy 
preserving deep learning on multi-institutional medical 
imaging. Nature Machine Intelligence 2021 3:6, 3(6), 
473–484. https://doi.org/10.1038/s42256-021-00337-8 
Khalil, K., Khan Mamun, M. M. R., Sherif, A., Elsersy, M. 
S.,  Imam,  A.  A.  A.,  Mahmoud,  M.,  &  Alsabaan,  M. 
(2023).  A  Federated  Learning  Model  Based  on 
Hardware  Acceleration  for  the  Early  Detection  of 
Alzheimer’s  Disease.  Sensors 2023, Vol. 23, Page 
8272, 23(19), 8272. https://doi.org/10.3390/S23198272 
Li,  Q.,  He,  B.,  &  Song,  D.  (2021).  Model-Contrastive 
Federated  Learning.  2021 IEEE/CVF Conference on 
Computer Vision and Pattern Recognition (CVPR), 
10708–10717.  https://doi.org/10.1109/CVPR46437. 
2021.01057 
Li, Q., Wen, Z., Wu, Z., Hu, S., Wang, N., Li, Y., Liu, X., 
&  He,  B.  (2021).  A  Survey  on  Federated  Learning 
Systems:  Vision,  Hype  and  Reality  for  Data  Privacy 
and Protection. IEEE Transactions on Knowledge and 
Data Engineering.  https://doi.org/10.1109/TKDE. 
2021.3124599 
Marcus, D. S., Wang, T. H., Parker, J., Csernansky, J. G., 
Morris, J. C.,  & Buckner, R. L.  (2007).  Open Access 
Series  of  Imaging  Studies  (OASIS):  Cross-sectional 
MRI Data in Young, Middle Aged, Nondemented, and 
Demented  Older  Adults.  Journal of Cognitive 
Neuroscience,  19(9),  1498–1507.  https://doi.org/10. 
1162/JOCN.2007.19.9.1498 
Mirzaei,  G.,  &  Adeli,  H.  (2022).  Machine  learning 
techniques  for  diagnosis  of  alzheimer  disease,  mild 
cognitive  disorder,  and  other  types  of  dementia. 
Biomedical Signal Processing and Control, 72, 103293. 
https://doi.org/10.1016/J.BSPC.2021.103293 
Mothukuri,  V.,  Parizi,  R.  M.,  Pouriyeh,  S.,  Huang,  Y., 
Dehghantanha, A., & Srivastava, G. (2021). A survey 
on  security  and privacy  of  federated  learning.  Future 
Generation Computer Systems,  115,  619–640. 
https://doi.org/10.1016/J.FUTURE.2020.10.007 
Narmadha,  K.,  &  Varalakshmi,  P.  (2022).  Federated 
Learning  in  Healthcare:  A  Privacy  Preserving 
Approach.  Studies in Health Technology and 
Informatics,  294,  194–198.  https://doi.org/10.3233/ 
SHTI220436 
Nguyen, T. V., Dakka, M. A., Diakiw, S. M., VerMilyea, 
M.  D.,  Perugini,  M.,  Hall,  J.  M.  M.,  &  Perugini,  D. 
(2022).  A  novel  decentralized  federated  learning 
approach to train on globally distributed, poor quality, 
and  protected  private medical data. Scientific Reports 
2022 12:1,  12(1),  1–12.  https://doi.org/10.1038/ 
s41598-022-12833-x 
Salehi,  A.  W.,  Baglat,  P.,  Sharma,  B.  B.,  Gupta,  G.,  & 
Upadhya, A. (2020). A CNN Model: Earlier Diagnosis 
and  Classification  of  Alzheimer  Disease  using  MRI. 
Proceedings - International Conference on Smart 
Electronics and Communication, ICOSEC 2020, 156–
161. https://doi.org/10.1109/ICOSEC49089.2020.9215 
402