
of the 18th International Conference on Evaluation of
Novel Approaches to Software Engineering, volume 1,
pages 64–76. Science and Technology Publications,
Lda.
Baumgartner, N. and Pulverm
¨
uller, E. (2024). The Life-
Cycle of Data Clumps: A Longitudinal Case Study
in Open-Source Projects. In 12th International Con-
ference on Model-Based Software and Systems Engi-
neering, Rome, Italy. Science and Technology Publi-
cations, Lda. [Accepted].
Bergstr
¨
om, G., Hujainah, F., Ho-Quang, T., Jolak, R., Ruk-
mono, S. A., Nurwidyantoro, A., and Chaudron, M. R.
(2022). Evaluating the layout quality of UML class
diagrams using machine learning. Journal of Systems
and Software, 192:111413.
Chaudron, M., Heijstek, W., and Nugroho, A. (2012). How
effective is UML modeling ? - An empirical perspec-
tive on costs and benefits. Software and Systems Mod-
eling, 4:571–580.
Chren, S., Buhnova, B., Macak, M., Daubner, L., and Rossi,
B. (2019). Mistakes in UML Diagrams: Analysis of
Student Projects in a Software Engineering Course.
In 2019 IEEE/ACM 41st International Conference on
Software Engineering: Software Engineering Educa-
tion and Training (ICSE-SEET), pages 100–109.
Dzidek, W. J., Arisholm, E., and Briand, L. C. (2008). A
Realistic Empirical Evaluation of the Costs and Ben-
efits of UML in Software Maintenance. IEEE Trans.
Softw. Eng., 34(3):407–432.
Eclipse Foundation (2023). Eclipse. Retrieved December
11, 2023, from https://www.eclipse.org/.
Fowler, M., Becker, P., Beck, K., Brant, J., Opdyke, W., and
Roberts, D. (1999). Refactoring - Improving the De-
sign of Existing Code. Addison-Wesley Professional,
Boston.
Hall, T., Zhang, M., Bowes, D., and Sun, Y. (2010). Code
Bad Smell Detector. Retrieved December 11, 2023,
from https://sourceforge.net/projects/cbsdetector/.
Hall, T., Zhang, M., Bowes, D., and Sun, Y. (2014). Some
Code Smells Have a Significant but Small Effect on
Faults. ACM Transactions on Software Engineering
and Methodology, pages 1–39.
Ho-Quang, T., Hebig, R., Robles, G., Chaudron, M. R.,
and Fernandez, M. A. (2017). Practices and Percep-
tions of UML Use in Open Source Projects. In 2017
IEEE/ACM 39th International Conference on Soft-
ware Engineering: Software Engineering in Practice
Track (ICSE-SEIP), pages 203–212.
International Organization for Standardization (2014).
ISO/IEC 19509:2014 - XML Metadata Interchange
(XMI). Retrieved December 11, 2023, from https:
//www.omg.org/spec/XMI/ISO/19509/PDF.
Jerzyk, M. and Madeyski, L. (2023). Code Smells: A Com-
prehensive Online Catalog and Taxonomy. In Kryvin-
ska, N., Gregus, M., and Fedushko, S., editors, De-
velopments in Information and Knowledge Manage-
ment Systems for Business Applications, pages 543–
576. Springer, Cham.
JetBrains (2023). List of Java Inspections. Retrieved
December 11, 2023, from https://www.jetbrains.com/
help/idea/list-of-java-inspections.html.
Koc¸, H., Erdo
˘
gan, A. M., Barjakly, Y., and Peker, S. (2021).
UML Diagrams in Software Engineering Research: A
Systematic Literature Review. Proceedings, 74(1).
Murphy-Hill, E. and Black, A. P. (2010). An Interactive
Ambient Visualization for Code Smells. In Proceed-
ings of the 5th International Symposium on Software
Visualization, SOFTVIS ’10, pages 5–14, New York,
NY, USA. Association for Computing Machinery.
Nugroho, A. and Chaudron, M. R. V. (2009). Evaluating
the Impact of UML Modeling on Software Quality:
An Industrial Case Study. In Sch
¨
urr, A. and Selic,
B., editors, Model Driven Engineering Languages and
Systems, pages 181–195. Springer, Berlin.
Reuter, R., Stark, T., Sedelmaier, Y., Landes, D., Mottok, J.,
and Wolff, C. (2020). Insights in Students’ Problems
during UML Modeling. In 2020 IEEE Global En-
gineering Education Conference (EDUCON), pages
592–600.
Robles, G., Ho-Quang, T., Hebig, R., Chaudron, M. R., and
Fern
´
andez, M. (2017). An Extensive Dataset of UML
Models in GitHub. In IEEE/ACM 14th International
Conference on Mining Software Repositories (MSR),
pages 519–522.
Savary-Leblanc, M., Le Pallec, X., Palanque, P., Mar-
tinie, C., Blouin, A., Jouault, F., Clavreul, M., and
Raffaillac, T. (2022). Mining Human Factors Gen-
eral Trends from +100k UML Class Diagrams. In
Proceedings of the 25th International Conference on
Model Driven Engineering Languages and Systems:
Companion Proceedings, MODELS ’22, pages 913–
922.
Su, Z., Ahn, B.-R., Eom, K.-Y., Kang, M.-K., Kim, J.-P.,
and Kim, M.-K. (2008). Plagiarism Detection Using
the Levenshtein Distance and Smith-Waterman Algo-
rithm. In 2008 3rd International Conference on Inno-
vative Computing Information and Control, page 569.
Visual Paradigm (2002). Visual Paradigm. Retrieved De-
cember 11, 2023, from https://www.visual-paradigm.
com/.
Yang, S. and Sahraoui, H. (2022). Towards automatically
extracting uml class diagrams from natural language
specifications. In Proceedings of the 25th Interna-
tional Conference on Model Driven Engineering Lan-
guages and Systems: Companion Proceedings, MOD-
ELS ’22. ACM.
Zhang, M., Baddoo, N., Wernick, P., and Hall, T. (2008).
Improving the Precision of Fowler’s Definitions of
Bad Smells. In 2008 32nd Annual IEEE Software En-
gineering Workshop, pages 161–166.
ENASE 2024 - 19th International Conference on Evaluation of Novel Approaches to Software Engineering
26