
Goldberg, K., Roeder, T., Gupta, D., and Perkins, C. (2001).
Eigentaste: A Constant Time Collaborative Filtering
Algorithm. Information Retrieval, 4(2):133–151.
He, D. P., He, Z. L., and Liu, C. (2020). Recommendation
algorithm combining tag data and naive bayes classifi-
cation. Proceedings - 2020 3rd International Confer-
ence on Electron Device and Mechanical Engineer-
ing, ICEDME 2020, pages 662–666.
Hristakeva, M., Knoth, P., Kershaw, D., Pettit, B., Jack,
K., Rossetti, M., and Vargas, S. (2017). Build-
ing Recommender systems for scholarly information.
ACM International Conference Proceeding Series,
Part F127853:25–32.
Jannach, D., Zanker, M., Felfernig, A., and Friedrich, G.
(2010). Recommender Systems: An Introduction.
Cambridge University Press.
Khan, M. A., Smyth, B., and Coyle, D. (2021). Address-
ing the complexity of personalized, context-aware and
health-aware food recommendations: an ensemble
topic modelling based approach. Journal of Intelli-
gent Information Systems, 57(2):229–269.
Knijnenburg, B. and Willemsen, M. (2015). Evaluating
Recommender Systems with User Experiments, pages
309–352.
Lazemi, S. and Ebrahimpour-Komleh, H. (2017). Improv-
ing collaborative recommender systems via emotional
features. Application of Information and Communica-
tion Technologies, AICT 2016 - Conference Proceed-
ings, pages 1–5.
Lika, B., Kolomvatsos, K., and Hadjiefthymiades, S.
(2014). Facing the cold start problem in recom-
mender systems. Expert systems with applications,
41(4):2065–2073.
Lin, C., Xie, R., Li, L., Huang, Z., and Li, T. (2012).
PRemiSE: Personalized News Recommendation via
Implicit Social Experts. In Proceedings of the 21st
ACM International Conference on Information and
Knowledge Management, CIKM ’12, pages 1607–
1611, New York, NY, USA. Association for Comput-
ing Machinery.
Manning, C. D., Raghavan, P., and Sch
¨
utze, H. (2009). An
Introduction to Information RetrievalAn Introduction
to Information Retrieval. Number c. Cambridge Uni-
versity Press.
Martins, E. F., Bel
´
em, F. M., Almeida, J. M., and
Gonc¸alves, M. (2013). Measuring and addressing the
impact of cold start on associative tag recommenders.
WebMedia 2013 - Proceedings of the 19th Brazilian
Symposium on Multimedia and the Web, pages 325–
332.
Monti, D., Rizzo, G., and Morisio, M. (2021). A systematic
literature review of multicriteria recommender sys-
tems, volume 54. Springer Netherlands.
Ning, X., Desrosiers, C., and Karypis, G. (2015). A
Comprehensive Survey of Neighborhood-Based Rec-
ommendation Methods, pages 37–76. Springer US,
Boston, MA.
Okada, K., Tan, P. X., and Kamioka, E. (2021). Five-Factor
Musical Preference Prediction for Solving New User
Cold-Start Problem in Content-Based Music Recom-
mender System. IISA 2021 - 12th International Con-
ference on Information, Intelligence, Systems and Ap-
plications.
Panda, D. K. and Ray, S. (2022). Approaches and algo-
rithms to mitigate cold start problems in recommender
systems: a systematic literature review. Journal of In-
telligent Information Systems, pages 341–366.
Pazzani, M. J. and Billsus, D. (2007). Content-based rec-
ommendation systems. In The adaptive web: methods
and strategies of web personalization, pages 325–341.
Springer.
Petersen, K., Feldt, R., Mujtaba, S., and Mattsson, M.
(2008). Systematic mapping studies in software engi-
neering. 12th International Conference on Evaluation
and Assessment in Software Engineering, EASE 2008,
(February 2015).
Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., and
Riedl, J. (1994). Grouplens: An open architecture for
collaborative filtering of netnews. In Proceedings of
the 1994 ACM conference on Computer supported co-
operative work, pages 175–186.
Ricci, F., Rokach, L., and Shapira, B. (2015). Recom-
mender systems: introduction and challenges. Rec-
ommender systems handbook, pages 1–34.
Schafer, J. B., Frankowski, D., Herlocker, J., and Sen, S.
(2007). Collaborative Filtering Recommender Sys-
tems, page 291–324. Springer-Verlag, Berlin, Heidel-
berg.
Shi, S., Ma, W., Wang, Z., Zhang, M., Fang, K., Xu, J.,
Liu, Y., and Ma, S. (2021). WG4Rec: Modeling Tex-
tual Content with Word Graph for News Recommen-
dation. In Proceedings of the 30th ACM International
Conference on Information & Knowledge Manage-
ment, CIKM ’21, pages 1651–1660, New York, NY,
USA. Association for Computing Machinery.
Son, L. H. (2016). Dealing with the new user cold-start
problem in recommender systems: A comparative re-
view. Information Systems, 58:87–104.
Sparling, E. I. and Sen, S. (2011). Rating: How difficult is
it? In Proceedings of the Fifth ACM Conference on
Recommender Systems, RecSys ’11, page 149–156,
New York, NY, USA. Association for Computing Ma-
chinery.
Tintarev, N. and Masthoff, J. (2015). Explaining recom-
mendations: Design and evaluation. In Recommender
systems handbook, pages 353–382. Springer.
van der Velde, M., Sense, F., Borst, J., and van Rijn, H.
(2021). Alleviating the Cold Start Problem in Adap-
tive Learning using Data-Driven Difficulty Estimates.
Computational Brain and Behavior, 4(2):231–249.
Walunj, V., Sharma, S., Wagh, A., Solanki, U., and Ma-
hajan, J. (2022). Smart tour advisor using machine
learning and natural language processing. pages 53–
57.
Zhang, Z., Dong, M., Ota, K., and Kudo, Y. (2020). Al-
leviating New User Cold-Start in User-Based Collab-
orative Filtering via Bipartite Network. IEEE Trans-
actions on Computational Social Systems, 7(3):672–
685.
ICEIS 2024 - 26th International Conference on Enterprise Information Systems
972