
mantic annotations for biomedical knowledge extrac-
tion. IEEE/ACM Transactions on Computational Bi-
ology and Bioinformatics, 13(2):209–219.
Mountasser, I., Ouhbi, B., Hdioud, F., and Frikh, B. (2021).
Semantic-based big data integration framework using
scalable distributed ontology matching strategy. Dis-
tributed and Parallel Databases, 39(4):891–937.
Mrhar, K., Douimi, O., Abik, M., and Benabdellah, N. C.
(2020). Towards a semantic integration of data from
learning platforms. IAES International Journal of Ar-
tificial Intelligence, 9(3):535–544.
Nagpal, P., Chaudhary, D., and Singh, J. (2021). Know-
ing the unknown: Unshielding the mysteries of se-
mantic web in health care domain. In Proceedings
of the Workshop on Advances in Computational Intel-
ligence, its Concepts & Applications (ACI 2021), vol-
ume 2823, pages 37–44. CEUR Workshop Proceed-
ings.
Nashipudimath, M. M., Shinde, S. K., and Jain, J. (2020).
An efficient integration and indexing method based on
feature patterns and semantic analysis for big data. Ar-
ray, 7.
Nath, R. P. D., Hose, K., Pedersen, T. B., and Romero,
O. (2017). Setl: A programmable semantic extract-
transform-load framework for semantic data ware-
houses. Information Systems, 68:17–43.
Nathalie, A. (2009). Schema matching based on attribute
values and background ontology. In 12th AGILE In-
ternational conference on geographic information sci-
ence, volume 1, pages 1–9. Springer Berlin, Heidel-
berg.
Niang, C., Marinica, C.,
´
Elise Leboucher, Bouiller, L.,
Capderou, C., and Bouchou, B. (2016). Ontology-
based data integration system for conservation-
restoration data (obdis-cr). In Proceedings of the 20th
International Database Engineering & Applications
Symposium, IDEAS ’16, page 218–223, New York,
New York, USA. Association for Computing Machin-
ery.
Nimmagadda, S. L., Reiners, T., and Wood, L. C.
(2019). On modelling big data guided supply chains
in knowledge-base geographic information systems.
Procedia Computer Science, 159:1155–1164.
Noriega, H. H. G. and Sanchez, F. G. (2019). Semantic (big)
data analysis: an extensive literature review. IEEE
Latin America Transactions, 17(05):796–806.
Nundloll, V., Lamb, R., Hankin, B., and Blair, G. (2021).
A semantic approach to enable data integration for
the domain of flood risk management. Environmen-
tal Challenges, 3.
Oo, S. M., Haesendonck, G., Meester, B. D., and Dimou,
A. (2022). Rmlstreamer-siso: An rdf stream generator
from streaming heterogeneous data. In International
Semantic Web Conference, pages 697–713.
Pereira, A., Lopes, R. P., and Oliveira, J. L. (2020).
Scaleus-fd: A fair data tool for biomedical applica-
tions. BioMed research international.
Phengsuwan, J., Shah, T., Sun, R., James, P., Thakker, D.,
and Ranjan, R. (2022). An ontology-based system for
discovering landslide-induced emergencies in electri-
cal grid. Transactions on Emerging Telecommunica-
tions Technologies, 33(3).
Pomp, A., Paulus, A., Jeschke, S., and Meisen, T. (2017).
Eskape: Platform for enabling semantics in the con-
tinuously evolving internet of things. In 2017 IEEE
11th International Conference on Semantic Comput-
ing (ICSC), pages 262–263, San Diego, CA, USA.
IEEE.
Qundus, J. A., Sch
¨
afermeier, R., Karam, N., Peikert, S.,
and Paschke, A. (2021). Roc: An ontology for coun-
try responses towards covid-19. In 2nd International
Conference on Digital Curation Technologies, volume
2836, Berlin, Germany. CEUR Workshop Proceed-
ings.
Radaoui, M., Ben Abdallah Ben Lamine, S., Zghal, H. B.,
Guegan, C. G., and Kabachi, N. (2019). Knowledge
guided integration of structured and unstructured data
in health decision process. In Proceedings of the 28th
International Conference on Information Systems De-
velopment: Information Systems Beyond 2020, ISD
2019, Toulon, France: ISEN Yncr
´
ea M
´
editerran
´
ee.
Ramzy, N., Auer, S., Ehm, H., and Chamanara, J. (2022).
Mare: Semantic supply chain disruption management
and resilience evaluation framework. In Proceed-
ings of the 24th International Conference on Enter-
prise Information Systems, volume 2, pages 484–493.
SCITEPRESS - Science and Technology Publications.
Rani, P. S., Suresh, R. M., and Sethukarasi, R. (2019).
Multi-level semantic annotation and unified data inte-
gration using semantic web ontology in big data pro-
cessing. Cluster Computing, 22(5):10401–10413.
Rouces, J., de Melo, G., and Hose, K. (2018). Addressing
structural and linguistic heterogeneity in the web1. AI
Communications, 31(1):3–18.
Saber, A., Al-Zoghby, A. M., and Elmougy, S. (2018). Big-
data aggregating, linking, integrating and represent-
ing using semantic web technologies. In Hassanien,
A. E., Tolba, M. F., Elhoseny, M., and Mostafa,
M., editors, The International Conference on Ad-
vanced Machine Learning Technologies and Appli-
cations (AMLTA2018), volume 723, pages 331–342,
Cairo, Egypt. Springer International Publishing.
Sandhya, H. and Roy, M. M. (2016). Data integration of
heterogeneous data sources using qr decomposition.
In S., T. S. M. B. S. D., editor, International Sympo-
sium on Intelligent Systems Technologies and Applica-
tions, volume 385 of Advances in Intelligent Systems
and Computing, pages 333–344. Springer Verlag.
Santipantakis, G. M., Glenis, A., Patroumpas, K., Vlachou,
A., Doulkeridis, C., Vouros, G. A., Pelekis, N., and
Theodoridis, Y. (2020). Spartan: Semantic integra-
tion of big spatio-temporal data from streaming and
archival sources. Future Generation Computer Sys-
tems, 110:540–555.
SCHIESSL, M. and BR
¨
ASCHER, M. (2017). Ontol-
ogy lexicalization: Relationship between content
and meaning in the context of information retrieval.
Transinformac¸
˜
ao, 29(1):57–72.
Sengloiluean, K. and Khuntong, R. (2020). Ontology-
based semantic integration of heterogeneous data
Heterogeneous Data Integration: A Literature Scope Review
199