
ings of the 49th Annual IEEE/ACM International Sym-
posium on Microarchitecture (MICRO), pages 22:1–
22:12. IEEE Computer Society.
Bai, J., Lu, F., Zhang, K., et al. (2019). ONNX: Open neural
network exchange.
Bunzel, S. (2011). AUTOSAR – The standardized software
architecture. Informatik Spektrum, 34(1):79–83.
Burrello, A., Garofalo, A., Bruschi, N., Tagliavini, G.,
Rossi, D., and Conti, F. (2021). DORY: Automatic
end-to-end deployment of real-world DNNs on low-
cost IoT MCUs. IEEE Transactions on Computers,
70(8):1253–1268.
Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., Xiao,
T., Xu, B., Zhang, C., and Zhang, Z. (2015). MXNet:
A flexible and efficient machine learning library for
heterogeneous distributed systems. The Computing
Research Repository (CoRR).
Chen, T., Moreau, T., Jiang, Z., Zheng, L., Yan, E. Q., Shen,
H., Cowan, M., Wang, L., Hu, Y., Ceze, L., Guestrin,
C., and Krishnamurthy, A. (2018). TVM: An auto-
mated end-to-end optimizing compiler for deep learn-
ing. In In Proceedings of the 13th USENIX Sympo-
sium on Operating Systems Design and Implementa-
tion (OSDI), pages 578–594. USENIX Association.
David, R., Duke, J., Jain, A., Reddi, V. J., Jeffries, N., Li,
J., Kreeger, N., Nappier, I., Natraj, M., Regev, S.,
Rhodes, R., Wang, T., and Warden, P. (2020). Ten-
sorFlow Lite Micro: Embedded machine learning on
TinyML systems. The Computing Research Reposi-
tory (CoRR).
Deutel, M., Woller, P., Mutschler, C., and Teich, J. (2022).
Energy-efficient deployment of deep learning applica-
tions on Cortex-M based microcontrollers using deep
compression. The Computing Research Repository
(CoRR).
Han, S., Mao, H., and Dally, W. J. (2016). Deep compres-
sion: Compressing deep neural network with pruning,
trained quantization and Huffman coding. In In Pro-
ceedings of 4th International Conference on Learning
Representations (ICLR).
Han, S., Pool, J., Tran, J., and Dally, W. J. (2015). Learning
both weights and connections for efficient neural net-
work. In In Proceedings of the Annual Conference on
Neural Information Processing Systems (NIPS), pages
1135–1143.
He, Y., Zhang, X., and Sun, J. (2017). Channel pruning for
accelerating very deep neural networks. In In IEEE
International Conference on Computer Vision (ICCV),
pages 1398–1406. IEEE Computer Society.
Heidorn, C., Hannig, F., and Teich, J. (2020). Design
space exploration for layer-parallel execution of con-
volutional neural networks on cgras. In Proceedings
of the 23rd International Workshop on Software and
Compilers for Embedded Systems (SCOPES), pages
26–31. ACM.
Heidorn, C., Meyerh
¨
ofer, N., Schinabeck, C., Hannig, F.,
and Teich, J. (2022). Hardware-aware evolutionary
filter pruning. In Embedded Computer Systems: Ar-
chitectures, Modeling, and Simulation - 22nd Inter-
national Conference, SAMOS 2022, Samos, Greece,
July 3-7, 2022, Proceedings, volume 13511 of Lecture
Notes in Computer Science, pages 283–299. Springer.
Heidorn, C., Sabih, M., Meyerh
¨
ofer, N., Schinabeck, C.,
Teich, J., and Hannig, F. (2024). Hardware-aware evo-
lutionary explainable filter pruning for convolutional
neural networks. International Journal of Parallel
Programming.
Kirchg
¨
assner, W., Wallscheid, O., and B
¨
ocker, J. (2021a).
Data-driven permanent magnet temperature estima-
tion in synchronous motors with supervised machine
learning: A benchmark. IEEE Transactions on Energy
Conversion, 36(3):2059–2067.
Kirchg
¨
assner, W., Wallscheid, O., and B
¨
ocker, J. (2021b).
Electric motor temperature.
Kirchg
¨
assner, W., Wallscheid, O., and B
¨
ocker, J. (2023).
Thermal neural networks: Lumped-parameter ther-
mal modeling with state-space machine learning.
Engineering Applications of Artificial Intelligence,
117:105537.
Lai, L. and Suda, N. (2018). Enabling deep learning at the
IoT edge. In In Proceedings of the International Con-
ference on Computer-Aided Design (ICCAD), page
135. ACM.
Li, H., Kadav, A., Durdanovic, I., Samet, H., and Graf, H. P.
(2017). Pruning filters for efficient ConvNets. In In
Proceedings of the 5th International Conference on
Learning Representations (ICLR). OpenReview.net.
Liberis, E., Dudziak, L., and Lane, N. D. (2021). µNAS:
Constrained neural architecture search for microcon-
trollers. In In Proceedings of the 1st Workshop on Ma-
chine Learning (EuroMLSys), pages 70–79. ACM.
Lin, J., Chen, W., Lin, Y., Cohn, J., Gan, C., and Han, S.
(2020). MCUNet: Tiny deep learning on IoT devices.
In In Proceedings of the Annual Conference on Neural
Information Processing Systems (NeurIPS).
Liu, C., Jobst, M., Guo, L., Shi, X., Partzsch, J., and Mayr,
C. (2023). Deploying machine learning models to
ahead-of-time runtime on edge using MicroTVM. The
Computing Research Repository (CoRR).
Ma, J. (2020). A higher-level Neural Network library on
Microcontrollers (NNoM).
MathWorks (2022). Statistics and machine learning tool-
box.
Novac, P., Hacene, G. B., Pegatoquet, A., Miramond, B.,
and Gripon, V. (2021). Quantization and deployment
of deep neural networks on microcontrollers. Sensors,
21(9):2984.
Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E.,
DeVito, Z., Lin, Z., Desmaison, A., Antiga, L., and
Lerer, A. (2017). Automatic differentiation in Py-
Torch. In In Proceedings of NIPS Autodiff Workshop.
OpenReview.net.
Petersen, P., Rudolf, T., and Sax, E. (2022). A data-driven
energy estimation based on the mixture of experts
method for battery electric vehicles. In In Proceedings
of the 8th International Conference on Vehicle Tech-
nology and Intelligent Transport Systems (VEHITS),
pages 384–390. SCITEPRESS.
Qian, C., Ling, T., and Schiele, G. (2023). Energy efficient
LSTM accelerators for embedded FPGAs through pa-
rameterised architecture design. In In Proceedings of
the 36th International Conference on Architecture of
Computing Systems (ARCS), pages 3–17. Springer.
VEHITS 2024 - 10th International Conference on Vehicle Technology and Intelligent Transport Systems
74